'Apply column name to row values unless nan or null
I'm attempting to add the column name of a dataframe to each row containing a non null value.
A sample data set I am working with is:
ID County Other Phone 2 Gender
0 10379 ELKHART nan M
1 10319 VAN BUREN 555-777-4444
2 10321 ELKHART nan
3 nan ELKHART nan
4 10352 ELKHART 555-999-6666 M
Is there a way that I can get the dataframe to look something like below where the column name is added to the beginning of the value separating it with a :
ID County Other Phone 2 Gender
0 ID: 10379 County: ELKHART nan Gender: M
1 ID: 10319 Other Phone 2: 555-777-4444
2 ID: 10321 County: ELKHART nan
3 nan County: ELKHART nan
4 ID: 10352 County: ELKHART Other Phone 2: 555-999-6666 Gender: M
Solution 1:[1]
You can try apply
on columns
df = df.apply(lambda col: col.mask(col.notna(), col.name+': '+col.astype(str)))
or with df.mask
m = df.notna()
df = df.mask(m, df.columns + ': ' + df.astype(str))
print(df)
ID County Other Phone 2 Gender
0 ID: 10379.0 County: ELKHART NaN Gender: M
1 ID: 10319.0 County: VAN BUREN Other Phone 2: 555-777-4444 None
2 ID: 10321.0 County: ELKHART NaN None
3 NaN County: ELKHART NaN None
4 ID: 10352.0 County: ELKHART Other Phone 2: 555-999-6666 Gender: M
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
Solution | Source |
---|---|
Solution 1 |