'Assign variables in groups based on fractions and several conditions
I've tried for several days on something I think should be rather simple, with no luck. Hope someone can help me!
I have a data frame called "test" with the following variables: "Firm", "Year", "Firm_size" and "Expenditures".
I want to assign firms to size groups by year and then display the mean, median, std.dev and N of expenditures for these groups in a table (e.g. stargazer). So the first size group (top 10% largest firms) should show the mean, median ++ of expenditures for the 10% largest firms each year.
The size groups should be,
- The 10% largest firms
- The firms that are between 10-25% largest
- The firms that are between 25-50% largest
- The firms that are between 50-75% largest
- The firms that are between 75-90% largest
- The 10% smallest firms
This is what I have tried:
test<-arrange(test, -Firm_size)
test$Variable = 0
test[1:min(5715, nrow(test)),]$Variable <- "Expenditures, 0% size <10%"
test[5715:min(14288, nrow(test)),]$Variable <- "Expenditures, 10% size <25%"
test[14288:min(28577, nrow(test)),]$Variable <- "Expenditures, 25% size <50%"
--> And so on
library(dplyr)
testtest = test%>%
group_by(Variable)%>%
dplyr::summarise(
Mean=mean(Expenditures),
Median=median(Expenditures),
Std.dev=sd(Expenditures),
N=n()
)
stargazer(testtest, type = "text", title = "Expenditures firms", digits = 1, summary = FALSE)
As shown over, I dont know how I could use fractions/group by percentage. I have therefore tried to assign firms in groups based on their rows after having arranged Firm_size to descending. The problem with doing so is that I dont take year in to consideration which I need to, and it is a lot of work to do this for each year (20 in total).
My intention was to make a new variable which gives each size group a name. E.g. top 10% largest firms each year should get a variable with the name "Expenditures, 0% size <10%"
Further I make a new dataframe "testtest" where I calculate the different measures, before using the stargazer to present it. This works.
!!EDIT!! Hi again,
Now I get the error "List object cannot be coerced to type double" when running the code on a new dataset (but it is the same variables as before).
The mutate-step I'm referring to is the "mutate(gs = cut ++" after "rowwise()" in the solution you provided.
Solution 1:[1]
You can create the quantiles as a nested variable (size_groups
), and then use cut()
to create the group sizes (gs
). Then group by Year
and gs
to summarize the indicators you want.
test %>%
group_by(Year) %>%
mutate(size_groups = list(quantile(Firm_size, probs=c(.1,.25,.5,.75,.9)))) %>%
rowwise() %>%
mutate(gs = cut(
Firm_size,c(-Inf, size_groups, Inf),
labels = c("Lowest 10%","10%-25%","25%-50%","50%-75%","75%-90%","Highest 10%"))) %>%
group_by(Year, gs) %>%
summarize(across(Expenditures,.fns = list(mean,median,sd,length)), .groups="drop") %>%
rename_all(~c("Year", "Group_Size", "Mean_Exp", "Med_Exp", "SD_Exp","N_Firms"))
Output:
# A tibble: 126 x 6
Year Group_Size Mean_Exp Med_Exp SD_Exp N_Firms
<int> <fct> <dbl> <dbl> <dbl> <int>
1 2000 Lowest 10% 20885. 21363. 3710. 3
2 2000 10%-25% 68127. 69497. 19045. 4
3 2000 25%-50% 42035. 35371. 30335. 6
4 2000 50%-75% 36089. 29802. 17724. 6
5 2000 75%-90% 53319. 54914. 19865. 4
6 2000 Highest 10% 57756. 49941. 34162. 3
7 2001 Lowest 10% 55945. 47359. 28283. 3
8 2001 10%-25% 61825. 70067. 21777. 4
9 2001 25%-50% 65088. 76340. 29960. 6
10 2001 50%-75% 57444. 53495. 32458. 6
# ... with 116 more rows
If you wanted to have an additional column with the yearly mean, you can remove the .groups="drop"
from the summarize(across())
line, and then add this final line to the pipeline:
mutate(YrMean = sum(Mean_Exp*N_Firms/sum(N_Firms)))
Note that this is correctly weighted by the number of Firms in each Group_size, and thus returns the equivalent of doing this with the original data
test %>% group_by(Year) %>% summarize(mean(Expenditures))
Input Data:
set.seed(123)
test = data.frame(
Firm = replicate(2000, sample(letters,1)),
Year = sample(2000:2020, 2000, replace=T),
Firm_size= ceiling(runif(2000,2000,5000)),
Expenditures = runif(2000, 10000,100000)
) %>% group_by(Firm,Year) %>% slice_head(n=1)
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
Solution | Source |
---|---|
Solution 1 |