'Automatically Create Tabbed skim() results with Proper Output format

I'm trying to create dynamically create tabbed output of skim() results in a R Notebook, but the output format comes out all funky.

I'm using the asis results option and this works well when I'm publishing plots. When I tried this code for skim()

```{r eval=TRUE, results='asis', echo=FALSE}
cat("# Main Tab {.tabset}")
cat('\n\n')
cat('## Subtab 1')
cat('\n\n')

iris %>% skim()
```

The Headers and tabs look right, but the output format is off.

enter image description here

I've tried to remove the asis in the chunk options and use knitr::asis_output() for the headers, but then the headers don't get tabbed correctly.

Converting the skim() results into a table via kable() also doesn't have a great format either when you knit to a notebook.

Eventually, I want to loop through a list of dataframes and skim each one. How can I create the same look as the skim() output format in each tab for this output?

thanks!



Solution 1:[1]

When I run the following code it looks like this:

---
title: "Test"
author: "Author"
date: '2022-05-13'
output: html_document
---

```{r eval=TRUE, results='asis', echo=FALSE}
library(dplyr)
library(skimr)
cat("# Main Tab {.tabset}")
cat('\n\n')
cat('## Subtab 1')
cat('\n\n')

iris %>% skim()
```

Output:

enter image description here

Sessioninfo

> sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS 12.3.1

Matrix products: default
LAPACK: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRlapack.dylib

locale:
[1] nl_NL.UTF-8/nl_NL.UTF-8/nl_NL.UTF-8/C/nl_NL.UTF-8/nl_NL.UTF-8

attached base packages:
[1] grid      stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] skimr_2.1.3                sjPlot_2.8.10              tm_0.7-8                   NLP_0.2-1                  cowplot_1.1.1             
 [6] raster_3.5-15              sp_1.4-6                   sf_1.0-7                   ggstatsplot_0.9.1          highcharter_0.9.4         
[11] plyr_1.8.6                 robfilter_4.1.2            MASS_7.3-55                robustbase_0.93-9          ggforce_0.3.3             
[16] xgboost_1.5.2.1            ranger_0.13.1              glmnet_4.1-3               Matrix_1.4-0               shiny_1.7.1               
[21] pROC_1.18.0                mlbench_2.1-3              RANN_2.6.1                 intrval_0.1-2              caret_6.0-90              
[26] lattice_0.20-45            gridExtra_2.3              gdtools_0.2.4              kableExtra_1.3.4           hms_1.1.1                 
[31] knitr_1.37                 qwraps2_0.5.2              janitor_2.1.0              readxl_1.3.1               forcats_0.5.1             
[36] purrr_0.3.4                readr_2.1.2                tidyr_1.2.0                tibble_3.1.7               tidyverse_1.3.1           
[41] fma_2.4                    forecast_8.16              plotly_4.10.0              stringr_1.4.0              sportyR_1.0.1             
[46] ggplot2_3.3.6              dplyr_1.0.8                tidyquant_1.0.3            quantmod_0.4.18            TTR_0.24.3                
[51] PerformanceAnalytics_2.0.4 xts_0.12.1                 zoo_1.8-9                  lubridate_1.8.0            data.table_1.14.2         
[56] magrittr_2.0.3            

loaded via a namespace (and not attached):
  [1] estimability_1.3       ModelMetrics_1.2.2.2   coda_0.19-4            rpart_4.1.16           hardhat_0.2.0         
  [6] generics_0.1.2         terra_1.5-21           proxy_0.4-26           future_1.24.0          correlation_0.8.0     
 [11] tzdb_0.2.0             rlist_0.4.6.2          webshot_0.5.2          xml2_1.3.3             httpuv_1.6.5          
 [16] wk_0.6.0               assertthat_0.2.1       gower_1.0.0            WRS2_1.1-3             xfun_0.30             
 [21] evaluate_0.15          promises_1.2.0.1       DEoptimR_1.0-10        fansi_1.0.3            dbplyr_2.1.1          
 [26] igraph_1.2.11          DBI_1.1.2              htmlwidgets_1.5.4      reshape_0.8.8          Quandl_2.11.0         
 [31] kSamples_1.2-9         stats4_4.1.0           Rmpfr_0.8-7            paletteer_1.4.0        ellipsis_0.3.2        
 [36] crosstalk_1.2.0        backports_1.4.1        insight_0.17.0         prismatic_1.1.0        vctrs_0.4.1           
 [41] sjlabelled_1.1.8       cachem_1.0.6           withr_2.5.0            rgdal_1.5-28           emmeans_1.7.2         
 [46] svglite_2.1.0          lazyeval_0.2.2         urca_1.3-0             crayon_1.5.1           recipes_0.2.0         
 [51] pkgconfig_2.0.3        SuppDists_1.1-9.7      slam_0.1-50            labeling_0.4.2         units_0.8-0           
 [56] tweenr_1.0.2           nlme_3.1-155           statsExpressions_1.3.1 nnet_7.3-17            rlang_1.0.2           
 [61] globals_0.14.0         lifecycle_1.0.1        MatrixModels_0.5-0     modelr_0.1.8           cellranger_1.1.0      
 [66] randomForest_4.7-1     polyclip_1.10-0        lmtest_0.9-39          datawizard_0.3.0       mc2d_0.1-21           
 [71] boot_1.3-28            base64enc_0.1-3        reprex_2.0.1           viridisLite_0.4.0      PMCMRplus_1.9.4       
 [76] parameters_0.17.0      KernSmooth_2.23-20     shape_1.4.6            classInt_0.4-3         multcompView_0.1-8    
 [81] s2_1.0.7               parallelly_1.30.0      ggeffects_1.1.1        scales_1.2.0           memoise_2.0.1         
 [86] compiler_4.1.0         rstantools_2.2.0       RColorBrewer_1.1-3     lme4_1.1-28            snakecase_0.11.0      
 [91] cli_3.3.0              listenv_0.8.0          patchwork_1.1.1        pbapply_1.5-0          tidyselect_1.1.2      
 [96] stringi_1.7.6          tseries_0.10-49        yaml_2.3.5             ggrepel_0.9.1          tools_4.1.0           
[101] future.apply_1.8.1     parallel_4.1.0         rstudioapi_0.13        foreach_1.5.2          prodlim_2019.11.13    
[106] farver_2.1.0           digest_0.6.29          lava_1.6.10            quadprog_1.5-8         BWStest_0.2.2         
[111] Rcpp_1.0.8.3           broom_0.7.12           BayesFactor_0.9.12-4.3 performance_0.8.0      later_1.3.0           
[116] httr_1.4.2             rsconnect_0.8.25       kernlab_0.9-29         effectsize_0.6.0.1     sjstats_0.18.1        
[121] colorspace_2.0-3       rvest_1.0.2            fs_1.5.2               splines_4.1.0          rematch2_2.1.2        
[126] systemfonts_1.0.4      xtable_1.8-4           gmp_0.6-5              nloptr_2.0.0           jsonlite_1.8.0        
[131] timeDate_3043.102      zeallot_0.1.0          ipred_0.9-12           R6_2.5.1               pillar_1.7.0          
[136] htmltools_0.5.2        mime_0.12              minqa_1.2.4            glue_1.6.2             fastmap_1.1.0         
[141] class_7.3-20           codetools_0.2-18       mvtnorm_1.1-3          utf8_1.2.2             curl_4.3.2            
[146] gtools_3.9.2           survival_3.3-1         repr_1.1.4             rmarkdown_2.13         munsell_0.5.0         
[151] e1071_1.7-9            iterators_1.0.14       sjmisc_2.8.9           haven_2.4.3            fracdiff_1.5-1        
[156] reshape2_1.4.4         gtable_0.3.0           bayestestR_0.11.5     

Sources

This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.

Source: Stack Overflow

Solution Source
Solution 1