'Categorical column after melt in pandas

Is it possible to end up with a categorical variable column after a melt operation in pandas?

If I set up the data like this:

import pandas as pd
import numpy as np

df = pd.DataFrame(
    np.random.randn(3, 5), 
    columns=["A", "B", "C", "D", "E"]
)
df["id"] = range(1, 4)
df
|    |         A |         B |         C |         D |          E |   id |
|----|-----------|-----------|-----------|-----------|------------|------|
|  0 | -0.406174 | -0.686917 | -0.172913 | -0.273074 | -0.0246714 |    1 |
|  1 |  0.323783 | -1.7731   |  1.57581  | -1.15671  | -1.23926   |    2 |
|  2 | -1.1426   | -0.591279 |  1.15265  |  0.326712 | -0.86374   |    3 |

and then apply

melted_df = df.melt(id_vars="id", value_vars=["A", "B", "C", "D", "E"])
melted_df
|    |   id | variable   |      value |
|----|------|------------|------------|
|  0 |    1 | A          | -0.406174  |
|  1 |    2 | A          |  0.323783  |
|  2 |    3 | A          | -1.1426    |
|  3 |    1 | B          | -0.686917  |
|  4 |    2 | B          | -1.7731    |
|  5 |    3 | B          | -0.591279  |
|  6 |    1 | C          | -0.172913  |
|  7 |    2 | C          |  1.57581   |
|  8 |    3 | C          |  1.15265   |
|  9 |    1 | D          | -0.273074  |
| 10 |    2 | D          | -1.15671   |
| 11 |    3 | D          |  0.326712  |
| 12 |    1 | E          | -0.0246714 |
| 13 |    2 | E          | -1.23926   |
| 14 |    3 | E          | -0.86374   |

The dtype of the variable column is object

melted_df.dtypes
id            int64
variable     object
value       float64
dtype: object

I'd like this to be category. I know, I can convert it easily by:

melted_df["variable"].astype("category")

But for large datasets, I'd like to avoid this overhead. In the documentation I didn't find such an option, but since the resulting column contains categorical data by definition, I presume there must be a possiblity.



Solution 1:[1]

I don't think it's possible with melt, because when it creates that column it infers the dtype and 'category' is not a dtype that pandas currently infers. (Here's a related issue where it doesn't correctly infer Int32 dtypes Why is pandas.melt messing with my dtypes?).

stack will keep the categorical dtype if you first convert the columns. stack will result in a slightly different ordering than melt, but the data will be the same. stack is also a bit clunkier with naming the resulting columns.

df = df.set_index('id')
df.columns = df.columns.astype('category')

res = (df.stack()
         .rename_axis(['id', 'variable'])
         .rename('value')
         .reset_index())
#    id variable     value
#0    1        A  0.424781
#1    1        B -0.317107
#2    1        C  0.731121
#3    1        D  0.042642
#4    1        E  0.648352
#...
#13   3        D -0.889600
#14   3        E -1.822898

res.dtypes
#id             int64
#variable    category
#value        float64
#dtype: object

Solution 2:[2]

One efficient option is with
pivot_longer from pyjanitor, using the names_transform parameter:

# pip install pyjanitor
import pandas as pd
import janitor

np.random.seed(456)

df = pd.DataFrame(
    np.random.randn(3, 5), 
    columns=["A", "B", "C", "D", "E"]
)
df["id"] = range(1, 4)
df

 A         B         C         D         E  id
0 -0.668129 -0.498210  0.618576  0.568692  1.350509   1
1  1.629589  0.301966  0.449483 -0.345811 -0.315231   2
2 -2.015971 -1.130231 -1.111846  0.237851 -0.325130   3

result = df.pivot_longer(index = 'id', names_transform = 'category')
result
    id variable     value
0    1        A -0.668129
1    2        A  1.629589
2    3        A -2.015971
3    1        B -0.498210
4    2        B  0.301966
5    3        B -1.130231
6    1        C  0.618576
7    2        C  0.449483
8    3        C -1.111846
9    1        D  0.568692
10   2        D -0.345811
11   3        D  0.237851
12   1        E  1.350509
13   2        E -0.315231
14   3        E -0.325130

result.dtypes

id             int64
variable    category
value        float64
dtype: object

Sources

This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.

Source: Stack Overflow

Solution Source
Solution 1
Solution 2