When using the scikit-learn library in Python, I can use the CountVectorizer to create ngrams of a desired length (e.g. 2 words) like so: from sklearn.metrics.
gatsby-cloud
connection-pooling
jcodec
ascii
class-library
tronbox
panning
dumpsys
cdn
angularjs-ng-href
npyscreen
information-hiding
pleora-sdk
spring-data-neo4j
supersocket.net
listpreference
scaffolding
wix3.11
visual-paradigm
session-cookies
undefined-function
conda-forge
self-host-webapi
jackson
react-google-login
siteminder
pyhive
reactivemongo
excel-365
python-hypothesis