'const vs constexpr on variables
Is there a difference between the following definitions?
const double PI = 3.141592653589793;
constexpr double PI = 3.141592653589793;
If not, which style is preferred in C++11?
Solution 1:[1]
I believe there is a difference. Let's rename them so that we can talk about them more easily:
const double PI1 = 3.141592653589793;
constexpr double PI2 = 3.141592653589793;
Both PI1
and PI2
are constant, meaning you can not modify them. However only PI2
is a compile-time constant. It shall be initialized at compile time. PI1
may be initialized at compile time or run time. Furthermore, only PI2
can be used in a context that requires a compile-time constant. For example:
constexpr double PI3 = PI1; // error
but:
constexpr double PI3 = PI2; // ok
and:
static_assert(PI1 == 3.141592653589793, ""); // error
but:
static_assert(PI2 == 3.141592653589793, ""); // ok
As to which you should use? Use whichever meets your needs. Do you want to ensure that you have a compile time constant that can be used in contexts where a compile-time constant is required? Do you want to be able to initialize it with a computation done at run time? Etc.
Solution 2:[2]
No difference here, but it matters when you have a type that has a constructor.
struct S {
constexpr S(int);
};
const S s0(0);
constexpr S s1(1);
s0
is a constant, but it does not promise to be initialized at compile-time. s1
is marked constexpr
, so it is a constant and, because S
's constructor is also marked constexpr
, it will be initialized at compile-time.
Mostly this matters when initialization at runtime would be time-consuming and you want to push that work off onto the compiler, where it's also time-consuming, but doesn't slow down execution time of the compiled program
Solution 3:[3]
constexpr indicates a value that's constant and known during compilation.
const indicates a value that's only constant; it's not compulsory to know during compilation.
int sz;
constexpr auto arraySize1 = sz; // error! sz's value unknown at compilation
std::array<int, sz> data1; // error! same problem
constexpr auto arraySize2 = 10; // fine, 10 is a compile-time constant
std::array<int, arraySize2> data2; // fine, arraySize2 is constexpr
Note that const doesn’t offer the same guarantee as constexpr, because const objects need not be initialized with values known during compilation.
int sz;
const auto arraySize = sz; // fine, arraySize is const copy of sz
std::array<int, arraySize> data; // error! arraySize's value unknown at compilation
All constexpr objects are const, but not all const objects are constexpr.
If you want compilers to guarantee that a variable has a value that can be used in contexts requiring compile-time constants, the tool to reach for is constexpr, not const.
Solution 4:[4]
A constexpr symbolic constant must be given a value that is known at compile time. For example:
constexpr int max = 100;
void use(int n)
{
constexpr int c1 = max+7; // OK: c1 is 107
constexpr int c2 = n+7; // Error: we don’t know the value of c2
// ...
}
To handle cases where the value of a “variable” that is initialized with a value that is not known at compile time but never changes after initialization, C++ offers a second form of constant (a const). For Example:
constexpr int max = 100;
void use(int n)
{
constexpr int c1 = max+7; // OK: c1 is 107
const int c2 = n+7; // OK, but don’t try to change the value of c2
// ...
c2 = 7; // error: c2 is a const
}
Such “const variables” are very common for two reasons:
- C++98 did not have constexpr, so people used const.
- List item “Variables” that are not constant expressions (their value is not known at compile time) but do not change values after initialization are in themselves widely useful.
Reference : "Programming: Principles and Practice Using C++" by Stroustrup
Solution 5:[5]
One more example to understand the difference between const
and constexp
.
int main()
{
int n;
cin >> n;
const int c = n; // OK: 'c' can also be initialized at run time
constexpr int e = n; // Error: 'e' must be initialized at compile time
}
Note: constexpr normally evaluated at compile-time, but they are not guaranteed to do so unless they're invoked in a context where a constant expression is required.
constexpr int add(int a, int b)
{
return a + b;
};
int main()
{
int n = add(4, 3); // may or may not be computed at compile time
constexpr int m = add(4,3); // must be computed at compile time
}
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
Solution | Source |
---|---|
Solution 1 | Deqing |
Solution 2 | Pete Becker |
Solution 3 | visitor |
Solution 4 | codeling |
Solution 5 |