'Convert columns to rows in Spark SQL
I have some data like this:
ID | Value1 | Value2 | Value40 |
---|---|---|---|
101 | 3 | 520 | 2001 |
102 | 29 | 530 | 2020 |
I want to take this data and convert in to a KV style pair instead
ID | ValueVv | ValueDesc |
---|---|---|
101 | 3 | Value1 |
101 | 520 | Value2 |
101 | 2001 | Value40 |
I think it's a pivot, but I can't think of what this needs to look like in code.
I am trying to solve in PySQL but also in a Python DataFrame as I am using Spark.
I could easily, just union each column into an output using SQL, but I was hoping there is a more efficient way?
I've looked at melt
as an option and stack
. But I'm unsure how to do this effectively.
Solution 1:[1]
It's the opposite of pivot - it's called unpivot.
In Spark, unpivoting is implemented using stack
function.
Using PySpark, this is what you could do if you didn't have many columns:
from pyspark.sql import SparkSession, functions as F
spark = SparkSession.builder.getOrCreate()
df = spark.createDataFrame(
[(101, 3, 520, 2001),
(102, 29, 530, 2020)],
['ID', 'Value1', 'Value2', 'Value40'])
df = df.select(
"ID",
F.expr("stack(3, Value1, 'Value1', Value2, 'Value2', Value40, 'Value40') as (ValueVv, ValueDesc)")
)
From your example I see that you may have lots of columns. In this case you may use something like this:
cols_to_unpivot = [f"`{c}`, \'{c}\'" for c in df.columns if c != 'ID']
stack_string = ", ".join(cols_to_unpivot)
df = df.select(
"ID",
F.expr(f"stack({len(cols_to_unpivot)}, {stack_string}) as (ValueVv, ValueDesc)")
)
For the example data both versions return
+---+-------+---------+
| ID|ValueVv|ValueDesc|
+---+-------+---------+
|101| 3| Value1|
|101| 520| Value2|
|101| 2001| Value40|
|102| 29| Value1|
|102| 530| Value2|
|102| 2020| Value40|
+---+-------+---------+
Solution 2:[2]
You can use flatmap
as follows:
val schema = df.schema
val df2 = df.flatMap(row => {
val id = row.getString(0)
(1 until row.size).map(i => {
(id, schema(i).name, row.getString(i))
})
}).toDF("ID", "ValueVv", "ValueDesc")
df2.show()
+---+-------+---------+
| ID|ValueVv|ValueDesc|
+---+-------+---------+
|101| Value1| 3|
|101| Value2| 520|
|101|Value40| 2001|
|102| Value1| 29|
|102| Value2| 530|
|102|Value40| 2020|
+---+-------+---------+
or stack
function from this link.
Solution 3:[3]
I've done this so far to pivot, but wanting to make it happen not using pandas.. but using spark dataframe only.
import pandas as pd
def main():
data={'AnID':[2001,2002,2003,2004],
'Name':['adam','jane','Sarah','Ryan'],
'Age':[23,22,21,24],
'Age1':[24,52,51,264],
'Age2':[263,262,261,264]}
df=pd.DataFrame(data)
#Iterate the DataFrame so that we can pivot the "columns" into Rows
schema = df.columns #gives me the names of the columns
df.index[0]
#loop Through the id to pivot on (assume it's the first one in the df)
j = 0
df2=pd.DataFrame()
while j < schema.size:
curvalid = schema[j]
idname = schema[j] #get each element of the array
vval = df[idname].values #Grab all the values for the given "column"
#then get the data for that array element and populate a new object
i = 0
while i < vval.size:
df3=pd.DataFrame({'DemoDesc' : curvalid, 'DemoID' : vval[i]}, index=[i])
df2 = df2.append(df3,ignore_index=True)
i = i + 1;
j = j + 1;
print(df2) #print the dataframe
return;
main()
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
Solution | Source |
---|---|
Solution 1 | |
Solution 2 | Lamanus |
Solution 3 | ZygD |