'Convert Matlab script to Python

I am trying to convert a script from the OCamCalib Matlab toolbox to python. This scripts estimate a inverse polynomial function used for the reverse path of light ray on a fisheye lens.

My python scripts fails to compute the polynomial values at the end.

The Matlab script: findinvpoly.m

%FINDINVPOLY finds the inverse polynomial specified in the argument.
%   [POL, ERR, N] = FINDINVPOLY(SS, RADIUS, N) finds an approximation of the inverse polynomial specified in OCAM_MODEL.SS.
%   The returned polynomial POL is used in WORLD2CAM_FAST to compute the reprojected point very efficiently.
%   
%   SS is the polynomial which describe the mirrror/lens model.
%   RADIUS is the radius (pixels) of the omnidirectional picture.
%   ERR is the error (pixel) that you commit in using the returned
%   polynomial instead of the inverse SS. N is searched so that
%   that ERR is < 0.01 pixels.
%
%   Copyright (C) 2008 DAVIDE SCARAMUZZA, ETH Zurich
%   Author: Davide Scaramuzza - email: [email protected]

function [pol, err, N] = findinvpoly(ss, radius)

if nargin < 3
    maxerr = inf;
    N = 1;
    while maxerr > 0.01 %Repeat until the reprojection error is smaller than 0.01 pixels
        N = N + 1;
        [pol, err] = findinvpoly2(ss, radius, N);
        maxerr = max(err);  
    end
else
    [pol, err, N] = findinvpoly2(ss, radius, N)
end

function [pol, err, N] = findinvpoly2(ss, radius, N)

theta = [-pi/2:0.01:1.20];
r     = invFUN(ss, theta, radius);
ind   = find(r~=inf);
theta = theta(ind);
r     = r(ind);

pol = polyfit(theta,r,N);
err = abs( r - polyval(pol, theta)); %approximation error in pixels

function r=invFUN(ss, theta, radius)

m=tan(theta);

r=[];
poly_coef=ss(end:-1:1);
poly_coef_tmp=poly_coef;
for j=1:length(m)
    poly_coef_tmp(end-1)=poly_coef(end-1)-m(j);
    rhoTmp=roots(poly_coef_tmp);
    res=rhoTmp(find(imag(rhoTmp)==0 & rhoTmp>0 & rhoTmp<radius ));
    if isempty(res) | length(res)>1
        r(j)=inf;
    else
        r(j)=res;
    end
end

The script calling the matlab function : main.m

coeff = [-1.729819e+03, 0.000000e+00, 2.218967e-04, -2.655544e-08, 2.169698e-11 ];


h = 2160;
w = 4096;
radius = sqrt(h*h + w*w);

[pol, err, N] = findinvpoly(coeff, radius);

pol

The output I have is :

pol =

   1.0e+03 *

    0.0002    0.0020    0.0057    0.0002   -0.0163   -0.0015    0.0345    0.0068   -0.0082    0.0463    0.0192    0.0751    0.2371   -0.0350    1.2974    2.4535

My Python script :

import numpy as np
import math

def find_inverse_polynome(poly_coefficients, radius, N=1, threshold_error = 0.01):

    max_error = np.inf
    while max_error > threshold_error:
        N = N+1
        poly, error = compute_inverse_polynome(poly_coefficients, radius, N)
        max_error = error.max()

    return poly, error, N

def compute_inverse_polynome(poly_coefficients, radius, N):
    theta = np.arange(-np.pi, 1.2, 0.01)
    r = np.array(inverse_poly(poly_coefficients, theta, radius))
    indices = np.where(r != np.inf)[0]
    theta = theta[indices]
    r = r[indices]

    poly = np.polyfit(theta, r, N)
    print(theta)
    exit()
    error = abs(r - np.polyval(poly, theta)) # approximation of error in pixels

    return poly, error

def inverse_poly(poly_coefficients, theta, radius):

    m = np.tan(theta)
    result = []
    reversed_poly_coefficients = poly_coefficients[::-1]
    reversed_poly_coefficients_temp = reversed_poly_coefficients

    for idx, j in enumerate(range(len(m))):
        reversed_poly_coefficients_temp[-2] = reversed_poly_coefficients[-2] - m[j]
        rho_temp = np.roots(reversed_poly_coefficients_temp)
        
        res = rho_temp[np.where((np.imag(rho_temp) == 0) & (rho_temp < radius) & (rho_temp>0))]
        if res.size == 0 or res.size > 1:
            result.append(np.inf)
        else:
            result.append(res)


    return result

poly_coeff = [-1.729819e+03, 0.000000e+00, 2.218967e-04, -2.655544e-08, 2.169698e-11 ]

poly_coeff = [1707.2, 0,    -0.00023066,    2.4174E-08, -1.8933E-11]

h = 2160
w = 4096
radius = math.sqrt(h*h + w*w)
a = find_inverse_polynome(poly_coeff, radius)


The current error I am having is :

Traceback (most recent call last):
  File "/media/alix/System/Users/aleroy/Documents/DPhil/algorithms/opticalflow/generate_invpoly.py", line 52, in <module>
    a = find_inverse_polynome(poly_coeff, radius)
  File "/media/alix/System/Users/aleroy/Documents/DPhil/algorithms/opticalflow/generate_invpoly.py", line 9, in find_inverse_polynome
    poly, error = compute_inverse_polynome(poly_coefficients, radius, N)
  File "/media/alix/System/Users/aleroy/Documents/DPhil/algorithms/opticalflow/generate_invpoly.py", line 22, in compute_inverse_polynome
    poly = np.polyfit(theta, r, N)
  File "<__array_function__ internals>", line 5, in polyfit
  File "/home/alix/Documents/dphil/venv/p38/lib/python3.8/site-packages/numpy/lib/polynomial.py", line 629, in polyfit
    c, resids, rank, s = lstsq(lhs, rhs, rcond)
  File "<__array_function__ internals>", line 5, in lstsq
  File "/home/alix/Documents/dphil/venv/p38/lib/python3.8/site-packages/numpy/linalg/linalg.py", line 2306, in lstsq
    x, resids, rank, s = gufunc(a, b, rcond, signature=signature, extobj=extobj)
TypeError: No loop matching the specified signature and casting was found for ufunc lstsq_n

EDIT : I was able to modify the code and it now outputs values. However the system does not converge. One condition was missing in the np.where of the inverse_poly() function. Now, I have this warning message :

RankWarning: Polyfit may be poorly conditioned
  poly, error = compute_inverse_polynome(poly_coefficients, radius, N)

As requested in the comments, this is the current value of r:

[[2.44779367e+03+0.j]
 [2.43423568e+03+0.j]
 [2.40712477e+03+0.j]
 [2.36649200e+03+0.j]
 [2.31243826e+03+0.j]
 [2.24520354e+03+0.j]
 [2.16526289e+03+0.j]
 [2.07344374e+03+0.j]
 [1.97104699e+03+0.j]
 [1.85993558e+03+0.j]
 [1.74253978e+03+0.j]
 [1.62173327e+03+0.j]
 [1.50057400e+03+0.j]
 [1.38196726e+03+0.j]
 [1.26835405e+03+0.j]
 [1.16151748e+03+0.j]
 [1.06254023e+03+0.j]
 [9.71883778e+02+0.j]
 [8.89530856e+02+0.j]
 [8.15138353e+02+0.j]
 [7.48169221e+02+0.j]
 [6.87991946e+02+0.j]
 [6.33948462e+02+0.j]
 [5.85396629e+02+0.j]
 [5.41734273e+02+0.j]
 [5.02410876e+02+0.j]
 [4.66931443e+02+0.j]
 [4.34855756e+02+0.j]
 [4.05795080e+02+0.j]
 [3.79407661e+02+0.j]
 [3.55393816e+02+0.j]
 [3.33491061e+02+0.j]
 [3.13469549e+02+0.j]
 [2.95127906e+02+0.j]
 [2.78289525e+02+0.j]
 [2.62799306e+02+0.j]
 [2.48520811e+02+0.j]
 [2.35333796e+02+0.j]
 [2.23132080e+02+0.j]
 [2.11821707e+02+0.j]
 [2.01319365e+02+0.j]
 [1.91551022e+02+0.j]
 [1.82450751e+02+0.j]
 [1.73959723e+02+0.j]
 [1.66025327e+02+0.j]
 [1.58600421e+02+0.j]
 [1.51642675e+02+0.j]
 [1.45114005e+02+0.j]
 [1.38980084e+02+0.j]
 [1.33209908e+02+0.j]
 [1.27775427e+02+0.j]
 [1.22651214e+02+0.j]
 [1.17814185e+02+0.j]
 [1.13243344e+02+0.j]
 [1.08919561e+02+0.j]
 [1.04825384e+02+0.j]
 [1.00944862e+02+0.j]
 [9.72633960e+01+0.j]
 [9.37676047e+01+0.j]
 [9.04452052e+01+0.j]
 [8.72849075e+01+0.j]
 [8.42763201e+01+0.j]
 [8.14098661e+01+0.j]
 [7.86767082e+01+0.j]
 [7.60686813e+01+0.j]
 [7.35782325e+01+0.j]
 [7.11983671e+01+0.j]
 [6.89225998e+01+0.j]
 [6.67449111e+01+0.j]
 [6.46597079e+01+0.j]
 [6.26617875e+01+0.j]
 [6.07463058e+01+0.j]
 [5.89087481e+01+0.j]
 [5.71449021e+01+0.j]
 [5.54508347e+01+0.j]
 [5.38228693e+01+0.j]
 [5.22575668e+01+0.j]
 [5.07517067e+01+0.j]
 [4.93022710e+01+0.j]
 [4.79064291e+01+0.j]
 [4.65615237e+01+0.j]
 [4.52650585e+01+0.j]
 [4.40146865e+01+0.j]
 [4.28081993e+01+0.j]
 [4.16435173e+01+0.j]
 [4.05186810e+01+0.j]
 [3.94318424e+01+0.j]
 [3.83812575e+01+0.j]
 [3.73652794e+01+0.j]
 [3.63823519e+01+0.j]
 [3.54310030e+01+0.j]
 [3.45098401e+01+0.j]
 [3.36175442e+01+0.j]
 [3.27528658e+01+0.j]
 [3.19146198e+01+0.j]
 [3.11016821e+01+0.j]
 [3.03129852e+01+0.j]
 [2.95475152e+01+0.j]
 [2.88043081e+01+0.j]
 [2.80824470e+01+0.j]
 [2.73810591e+01+0.j]
 [2.66993132e+01+0.j]
 [2.60364170e+01+0.j]
 [2.53916149e+01+0.j]
 [2.47641859e+01+0.j]
 [2.41534412e+01+0.j]
 [2.35587228e+01+0.j]
 [2.29794012e+01+0.j]
 [2.24148742e+01+0.j]
 [2.18645646e+01+0.j]
 [2.13279196e+01+0.j]
 [2.08044085e+01+0.j]
 [2.02935217e+01+0.j]
 [1.97947697e+01+0.j]
 [1.93076813e+01+0.j]
 [1.88318027e+01+0.j]
 [1.83666965e+01+0.j]
 [1.79119404e+01+0.j]
 [1.74671260e+01+0.j]
 [1.70318581e+01+0.j]
 [1.66057535e+01+0.j]
 [1.61884399e+01+0.j]
 [1.57795551e+01+0.j]
 [1.53787458e+01+0.j]
 [1.49856666e+01+0.j]
 [1.45999792e+01+0.j]
 [1.42213508e+01+0.j]
 [1.38494533e+01+0.j]
 [1.34839622e+01+0.j]
 [1.31245549e+01+0.j]
 [1.27709093e+01+0.j]
 [1.24227025e+01+0.j]
 [1.20796086e+01+0.j]
 [1.17412968e+01+0.j]
 [1.14074293e+01+0.j]
 [1.10776577e+01+0.j]
 [1.07516204e+01+0.j]
 [1.04289382e+01+0.j]
 [1.01092096e+01+0.j]
 [9.79200415e+00+0.j]
 [9.47685546e+00+0.j]
 [9.16325079e+00+0.j]
 [8.85061852e+00+0.j]
 [8.53831107e+00+0.j]
 [8.22558216e+00+0.j]
 [7.91155518e+00+0.j]
 [7.59517858e+00+0.j]
 [7.27516091e+00+0.j]
 [6.94987288e+00+0.j]
 [6.61719378e+00+0.j]
 [6.27425842e+00+0.j]
 [5.91701393e+00+0.j]
 [5.53937971e+00+0.j]
 [5.13147807e+00+0.j]
 [4.67530431e+00+0.j]
 [4.13134483e+00+0.j]
 [3.37490430e+00+0.j]
 [9.69109951e-01+0.j]
 [1.03280934e+00+0.j]
 [1.06639997e+00+0.j]
 [1.08970138e+00+0.j]
 [1.10772769e+00+0.j]
 [1.12251856e+00+0.j]
 [1.13511044e+00+0.j]
 [1.14610442e+00+0.j]
 [1.15588125e+00+0.j]
 [1.16469793e+00+0.j]
 [1.17273640e+00+0.j]
 [1.18013037e+00+0.j]
 [1.18698108e+00+0.j]
 [1.19336713e+00+0.j]
 [1.19935080e+00+0.j]
 [1.20498229e+00+0.j]
 [1.21030271e+00+0.j]
 [1.21534615e+00+0.j]
 [1.22014122e+00+0.j]
 [1.22471214e+00+0.j]
 [1.22907965e+00+0.j]
 [1.23326161e+00+0.j]
 [1.23727355e+00+0.j]
 [1.24112901e+00+0.j]
 [1.24483994e+00+0.j]
 [1.24841688e+00+0.j]
 [1.25186920e+00+0.j]
 [1.25520528e+00+0.j]
 [1.25843261e+00+0.j]
 [1.26155796e+00+0.j]
 [1.26458744e+00+0.j]
 [1.26752657e+00+0.j]
 [1.27038039e+00+0.j]
 [1.27315350e+00+0.j]
 [1.27585010e+00+0.j]
 [1.27847405e+00+0.j]
 [1.28102889e+00+0.j]
 [1.28351789e+00+0.j]
 [1.28594406e+00+0.j]
 [1.28831021e+00+0.j]
 [1.29061893e+00+0.j]
 [1.29287263e+00+0.j]
 [1.29507354e+00+0.j]
 [1.29722377e+00+0.j]
 [1.29932526e+00+0.j]
 [1.30137985e+00+0.j]
 [1.30338924e+00+0.j]
 [1.30535505e+00+0.j]
 [1.30727878e+00+0.j]
 [1.30916185e+00+0.j]
 [1.31100560e+00+0.j]
 [1.31281129e+00+0.j]
 [1.31458012e+00+0.j]
 [1.31631320e+00+0.j]
 [1.31801160e+00+0.j]
 [1.31967633e+00+0.j]
 [1.32130834e+00+0.j]
 [1.32290854e+00+0.j]
 [1.32447779e+00+0.j]
 [1.32601691e+00+0.j]
 [1.32752666e+00+0.j]
 [1.32900780e+00+0.j]
 [1.33046103e+00+0.j]
 [1.33188702e+00+0.j]
 [1.33328641e+00+0.j]
 [1.33465981e+00+0.j]
 [1.33600780e+00+0.j]
 [1.33733096e+00+0.j]
 [1.33862980e+00+0.j]
 [1.33990484e+00+0.j]
 [1.34115656e+00+0.j]
 [1.34238545e+00+0.j]
 [1.34359194e+00+0.j]
 [1.34477647e+00+0.j]
 [1.34593945e+00+0.j]
 [1.34708128e+00+0.j]
 [1.34820234e+00+0.j]
 [1.34930298e+00+0.j]
 [1.35038358e+00+0.j]
 [1.35144446e+00+0.j]
 [1.35248594e+00+0.j]
 [1.35350835e+00+0.j]
 [1.35451198e+00+0.j]
 [1.35549712e+00+0.j]
 [1.35646406e+00+0.j]
 [1.35741305e+00+0.j]
 [1.35834437e+00+0.j]
 [1.35925825e+00+0.j]
 [1.36015495e+00+0.j]
 [1.36103469e+00+0.j]
 [1.36189770e+00+0.j]
 [1.36274419e+00+0.j]
 [1.36357437e+00+0.j]
 [1.36438845e+00+0.j]
 [1.36518661e+00+0.j]
 [1.36596906e+00+0.j]
 [1.36673596e+00+0.j]
 [1.36748750e+00+0.j]
 [1.36822384e+00+0.j]
 [1.36894514e+00+0.j]
 [1.36965157e+00+0.j]
 [1.37034328e+00+0.j]
 [1.37102042e+00+0.j]
 [1.37168312e+00+0.j]
 [1.37233153e+00+0.j]
 [1.37296577e+00+0.j]
 [1.37358599e+00+0.j]
 [1.37419230e+00+0.j]
 [1.37478482e+00+0.j]
 [1.37536368e+00+0.j]
 [1.37592897e+00+0.j]
 [1.37648081e+00+0.j]
 [1.37701932e+00+0.j]
 [1.37754457e+00+0.j]
 [1.37805668e+00+0.j]
 [1.37855575e+00+0.j]
 [1.37904185e+00+0.j]
 [1.37951508e+00+0.j]
 [1.37997552e+00+0.j]
 [1.38042326e+00+0.j]
 [1.38085838e+00+0.j]
 [1.38128094e+00+0.j]
 [1.38169103e+00+0.j]
 [1.38208872e+00+0.j]
 [1.38247406e+00+0.j]
 [1.38284714e+00+0.j]
 [1.38320801e+00+0.j]
 [1.38355672e+00+0.j]
 [1.38389335e+00+0.j]
 [1.38421795e+00+0.j]
 [1.38453056e+00+0.j]
 [1.38483124e+00+0.j]
 [1.38512004e+00+0.j]
 [1.38539701e+00+0.j]
 [1.38566219e+00+0.j]
 [1.38591561e+00+0.j]
 [1.38615734e+00+0.j]
 [1.38638739e+00+0.j]
 [1.38660581e+00+0.j]
 [1.38681263e+00+0.j]
 [1.38700788e+00+0.j]
 [1.38719160e+00+0.j]
 [1.38736382e+00+0.j]
 [1.38752455e+00+0.j]
 [1.38767383e+00+0.j]
 [1.38781167e+00+0.j]
 [1.38793810e+00+0.j]
 [1.38805314e+00+0.j]
 [1.38815681e+00+0.j]
 [1.38824912e+00+0.j]
 [1.38833008e+00+0.j]
 [1.38839971e+00+0.j]
 [1.38845802e+00+0.j]
 [1.38850502e+00+0.j]
 [1.38854071e+00+0.j]
 [1.38856510e+00+0.j]
 [1.38857819e+00+0.j]
 [1.38857999e+00+0.j]
 [1.38857049e+00+0.j]
 [1.38854970e+00+0.j]
 [1.38851761e+00+0.j]
 [1.38847422e+00+0.j]
 [1.38841951e+00+0.j]
 [1.38835349e+00+0.j]
 [1.38827614e+00+0.j]
 [1.38818745e+00+0.j]
 [1.38808740e+00+0.j]
 [1.38797598e+00+0.j]
 [1.38785318e+00+0.j]
 [1.38771897e+00+0.j]
 [1.38757334e+00+0.j]
 [1.38741626e+00+0.j]
 [1.38724771e+00+0.j]
 [1.38706766e+00+0.j]
 [1.38687608e+00+0.j]
 [1.38667294e+00+0.j]
 [1.38645822e+00+0.j]
 [1.38623188e+00+0.j]
 [1.38599388e+00+0.j]
 [1.38574418e+00+0.j]
 [1.38548275e+00+0.j]
 [1.38520955e+00+0.j]
 [1.38492452e+00+0.j]
 [1.38462763e+00+0.j]
 [1.38431882e+00+0.j]
 [1.38399805e+00+0.j]
 [1.38366526e+00+0.j]
 [1.38332040e+00+0.j]
 [1.38296341e+00+0.j]
 [1.38259423e+00+0.j]
 [1.38221280e+00+0.j]
 [1.38181905e+00+0.j]
 [1.38141292e+00+0.j]
 [1.38099434e+00+0.j]
 [1.38056323e+00+0.j]
 [1.38011952e+00+0.j]
 [1.37966313e+00+0.j]
 [1.37919398e+00+0.j]
 [1.37871199e+00+0.j]
 [1.37821706e+00+0.j]
 [1.37770912e+00+0.j]
 [1.37718806e+00+0.j]
 [1.37665379e+00+0.j]
 [1.37610620e+00+0.j]
 [1.37554521e+00+0.j]
 [1.37497068e+00+0.j]
 [1.37438253e+00+0.j]
 [1.37378062e+00+0.j]
 [1.37316485e+00+0.j]
 [1.37253508e+00+0.j]
 [1.37189120e+00+0.j]
 [1.37123307e+00+0.j]
 [1.37056054e+00+0.j]
 [1.36987349e+00+0.j]
 [1.36917177e+00+0.j]
 [1.36845522e+00+0.j]
 [1.36772368e+00+0.j]
 [1.36697701e+00+0.j]
 [1.36621502e+00+0.j]
 [1.36543754e+00+0.j]
 [1.36464441e+00+0.j]
 [1.36383542e+00+0.j]
 [1.36301039e+00+0.j]
 [1.36216911e+00+0.j]
 [1.36131139e+00+0.j]
 [1.36043700e+00+0.j]
 [1.35954573e+00+0.j]
 [1.35863735e+00+0.j]
 [1.35771161e+00+0.j]
 [1.35676828e+00+0.j]
 [1.35580709e+00+0.j]
 [1.35482777e+00+0.j]
 [1.35383006e+00+0.j]
 [1.35281367e+00+0.j]
 [1.35177829e+00+0.j]
 [1.35072362e+00+0.j]
 [1.34964935e+00+0.j]
 [1.34855512e+00+0.j]
 [1.34744061e+00+0.j]
 [1.34630544e+00+0.j]
 [1.34514924e+00+0.j]
 [1.34397162e+00+0.j]
 [1.34277216e+00+0.j]
 [1.34155046e+00+0.j]
 [1.34030606e+00+0.j]
 [1.33903849e+00+0.j]
 [1.33774729e+00+0.j]
 [1.33643194e+00+0.j]
 [1.33509192e+00+0.j]
 [1.33372667e+00+0.j]
 [1.33233562e+00+0.j]
 [1.33091818e+00+0.j]
 [1.32947370e+00+0.j]
 [1.32800152e+00+0.j]
 [1.32650096e+00+0.j]
 [1.32497128e+00+0.j]
 [1.32341172e+00+0.j]
 [1.32182147e+00+0.j]
 [1.32019968e+00+0.j]
 [1.31854548e+00+0.j]
 [1.31685791e+00+0.j]
 [1.31513599e+00+0.j]
 [1.31337867e+00+0.j]
 [1.31158484e+00+0.j]
 [1.30975335e+00+0.j]
 [1.30788294e+00+0.j]
 [1.30597231e+00+0.j]
 [1.30402007e+00+0.j]
 [1.30202473e+00+0.j]
 [1.29998472e+00+0.j]
 [1.29789836e+00+0.j]
 [1.29576386e+00+0.j]
 [1.29357931e+00+0.j]
 [1.29134267e+00+0.j]
 [1.28905173e+00+0.j]
 [1.28670414e+00+0.j]
 [1.28429738e+00+0.j]
 [1.28182871e+00+0.j]]

This is the current value of theta:

[-3.14159265e+00 -3.13159265e+00 -3.12159265e+00 -3.11159265e+00
 -3.10159265e+00 -3.09159265e+00 -3.08159265e+00 -3.07159265e+00
 -3.06159265e+00 -3.05159265e+00 -3.04159265e+00 -3.03159265e+00
 -3.02159265e+00 -3.01159265e+00 -3.00159265e+00 -2.99159265e+00
 -2.98159265e+00 -2.97159265e+00 -2.96159265e+00 -2.95159265e+00
 -2.94159265e+00 -2.93159265e+00 -2.92159265e+00 -2.91159265e+00
 -2.90159265e+00 -2.89159265e+00 -2.88159265e+00 -2.87159265e+00
 -2.86159265e+00 -2.85159265e+00 -2.84159265e+00 -2.83159265e+00
 -2.82159265e+00 -2.81159265e+00 -2.80159265e+00 -2.79159265e+00
 -2.78159265e+00 -2.77159265e+00 -2.76159265e+00 -2.75159265e+00
 -2.74159265e+00 -2.73159265e+00 -2.72159265e+00 -2.71159265e+00
 -2.70159265e+00 -2.69159265e+00 -2.68159265e+00 -2.67159265e+00
 -2.66159265e+00 -2.65159265e+00 -2.64159265e+00 -2.63159265e+00
 -2.62159265e+00 -2.61159265e+00 -2.60159265e+00 -2.59159265e+00
 -2.58159265e+00 -2.57159265e+00 -2.56159265e+00 -2.55159265e+00
 -2.54159265e+00 -2.53159265e+00 -2.52159265e+00 -2.51159265e+00
 -2.50159265e+00 -2.49159265e+00 -2.48159265e+00 -2.47159265e+00
 -2.46159265e+00 -2.45159265e+00 -2.44159265e+00 -2.43159265e+00
 -2.42159265e+00 -2.41159265e+00 -2.40159265e+00 -2.39159265e+00
 -2.38159265e+00 -2.37159265e+00 -2.36159265e+00 -2.35159265e+00
 -2.34159265e+00 -2.33159265e+00 -2.32159265e+00 -2.31159265e+00
 -2.30159265e+00 -2.29159265e+00 -2.28159265e+00 -2.27159265e+00
 -2.26159265e+00 -2.25159265e+00 -2.24159265e+00 -2.23159265e+00
 -2.22159265e+00 -2.21159265e+00 -2.20159265e+00 -2.19159265e+00
 -2.18159265e+00 -2.17159265e+00 -2.16159265e+00 -2.15159265e+00
 -2.14159265e+00 -2.13159265e+00 -2.12159265e+00 -2.11159265e+00
 -2.10159265e+00 -2.09159265e+00 -2.08159265e+00 -2.07159265e+00
 -2.06159265e+00 -2.05159265e+00 -2.04159265e+00 -2.03159265e+00
 -2.02159265e+00 -2.01159265e+00 -2.00159265e+00 -1.99159265e+00
 -1.98159265e+00 -1.97159265e+00 -1.96159265e+00 -1.95159265e+00
 -1.94159265e+00 -1.93159265e+00 -1.92159265e+00 -1.91159265e+00
 -1.90159265e+00 -1.89159265e+00 -1.88159265e+00 -1.87159265e+00
 -1.86159265e+00 -1.85159265e+00 -1.84159265e+00 -1.83159265e+00
 -1.82159265e+00 -1.81159265e+00 -1.80159265e+00 -1.79159265e+00
 -1.78159265e+00 -1.77159265e+00 -1.76159265e+00 -1.75159265e+00
 -1.74159265e+00 -1.73159265e+00 -1.72159265e+00 -1.71159265e+00
 -1.70159265e+00 -1.69159265e+00 -1.68159265e+00 -1.67159265e+00
 -1.66159265e+00 -1.65159265e+00 -1.64159265e+00 -1.63159265e+00
 -1.62159265e+00 -1.61159265e+00 -1.60159265e+00 -1.59159265e+00
 -1.58159265e+00 -1.57159265e+00 -1.56159265e+00 -1.55159265e+00
 -1.54159265e+00 -1.53159265e+00 -1.52159265e+00 -1.51159265e+00
 -1.50159265e+00 -1.49159265e+00 -1.48159265e+00 -1.47159265e+00
 -1.46159265e+00 -1.45159265e+00 -1.44159265e+00 -1.43159265e+00
 -1.42159265e+00 -1.41159265e+00 -1.40159265e+00 -1.39159265e+00
 -1.38159265e+00 -1.37159265e+00 -1.36159265e+00 -1.35159265e+00
 -1.34159265e+00 -1.33159265e+00 -1.32159265e+00 -1.31159265e+00
 -1.30159265e+00 -1.29159265e+00 -1.28159265e+00 -1.27159265e+00
 -1.26159265e+00 -1.25159265e+00 -1.24159265e+00 -1.23159265e+00
 -1.22159265e+00 -1.21159265e+00 -1.20159265e+00 -1.19159265e+00
 -1.18159265e+00 -1.17159265e+00 -1.16159265e+00 -1.15159265e+00
 -1.14159265e+00 -1.13159265e+00 -1.12159265e+00 -1.11159265e+00
 -1.10159265e+00 -1.09159265e+00 -1.08159265e+00 -1.07159265e+00
 -1.06159265e+00 -1.05159265e+00 -1.04159265e+00 -1.03159265e+00
 -1.02159265e+00 -1.01159265e+00 -1.00159265e+00 -9.91592654e-01
 -9.81592654e-01 -9.71592654e-01 -9.61592654e-01 -9.51592654e-01
 -9.41592654e-01 -9.31592654e-01 -9.21592654e-01 -9.11592654e-01
 -9.01592654e-01 -8.91592654e-01 -8.81592654e-01 -8.71592654e-01
 -8.61592654e-01 -8.51592654e-01 -8.41592654e-01 -8.31592654e-01
 -8.21592654e-01 -8.11592654e-01 -8.01592654e-01 -7.91592654e-01
 -7.81592654e-01 -7.71592654e-01 -7.61592654e-01 -7.51592654e-01
 -7.41592654e-01 -7.31592654e-01 -7.21592654e-01 -7.11592654e-01
 -7.01592654e-01 -6.91592654e-01 -6.81592654e-01 -6.71592654e-01
 -6.61592654e-01 -6.51592654e-01 -6.41592654e-01 -6.31592654e-01
 -6.21592654e-01 -6.11592654e-01 -6.01592654e-01 -5.91592654e-01
 -5.81592654e-01 -5.71592654e-01 -5.61592654e-01 -5.51592654e-01
 -5.41592654e-01 -5.31592654e-01 -5.21592654e-01 -5.11592654e-01
 -5.01592654e-01 -4.91592654e-01 -4.81592654e-01 -4.71592654e-01
 -4.61592654e-01 -4.51592654e-01 -4.41592654e-01 -4.31592654e-01
 -4.21592654e-01 -4.11592654e-01 -4.01592654e-01 -3.91592654e-01
 -3.81592654e-01 -3.71592654e-01 -3.61592654e-01 -3.51592654e-01
 -3.41592654e-01 -3.31592654e-01 -3.21592654e-01 -3.11592654e-01
 -3.01592654e-01 -2.91592654e-01 -2.81592654e-01 -2.71592654e-01
 -2.61592654e-01 -2.51592654e-01 -2.41592654e-01 -2.31592654e-01
 -2.21592654e-01 -2.11592654e-01 -2.01592654e-01 -1.91592654e-01
 -1.81592654e-01 -1.71592654e-01 -1.61592654e-01 -1.51592654e-01
 -1.41592654e-01 -1.31592654e-01 -1.21592654e-01 -1.11592654e-01
 -1.01592654e-01 -9.15926536e-02 -8.15926536e-02 -7.15926536e-02
 -6.15926536e-02 -5.15926536e-02 -4.15926536e-02 -3.15926536e-02
 -2.15926536e-02 -1.15926536e-02 -1.59265359e-03  8.40734641e-03
  1.84073464e-02  2.84073464e-02  3.84073464e-02  4.84073464e-02
  5.84073464e-02  6.84073464e-02  7.84073464e-02  8.84073464e-02
  9.84073464e-02  1.08407346e-01  1.18407346e-01  1.28407346e-01
  1.38407346e-01  1.48407346e-01  1.58407346e-01  1.68407346e-01
  1.78407346e-01  1.88407346e-01  1.98407346e-01  2.08407346e-01
  2.18407346e-01  2.28407346e-01  2.38407346e-01  2.48407346e-01
  2.58407346e-01  2.68407346e-01  2.78407346e-01  2.88407346e-01
  2.98407346e-01  3.08407346e-01  3.18407346e-01  3.28407346e-01
  3.38407346e-01  3.48407346e-01  3.58407346e-01  3.68407346e-01
  3.78407346e-01  3.88407346e-01  3.98407346e-01  4.08407346e-01
  4.18407346e-01  4.28407346e-01  4.38407346e-01  4.48407346e-01
  4.58407346e-01  4.68407346e-01  4.78407346e-01  4.88407346e-01
  4.98407346e-01  5.08407346e-01  5.18407346e-01  5.28407346e-01
  5.38407346e-01  5.48407346e-01  5.58407346e-01  5.68407346e-01
  5.78407346e-01  5.88407346e-01  5.98407346e-01  6.08407346e-01
  6.18407346e-01  6.28407346e-01  6.38407346e-01  6.48407346e-01
  6.58407346e-01  6.68407346e-01  6.78407346e-01  6.88407346e-01
  6.98407346e-01  7.08407346e-01  7.18407346e-01  7.28407346e-01
  7.38407346e-01  7.48407346e-01  7.58407346e-01  7.68407346e-01
  7.78407346e-01  7.88407346e-01  7.98407346e-01  8.08407346e-01
  8.18407346e-01  8.28407346e-01  8.38407346e-01  8.48407346e-01
  8.58407346e-01  8.68407346e-01  8.78407346e-01  8.88407346e-01
  8.98407346e-01  9.08407346e-01  9.18407346e-01  9.28407346e-01
  9.38407346e-01  9.48407346e-01  9.58407346e-01  9.68407346e-01
  9.78407346e-01  9.88407346e-01  9.98407346e-01  1.00840735e+00
  1.01840735e+00  1.02840735e+00  1.03840735e+00  1.04840735e+00
  1.05840735e+00  1.06840735e+00  1.07840735e+00  1.08840735e+00
  1.09840735e+00  1.10840735e+00  1.11840735e+00  1.12840735e+00
  1.13840735e+00  1.14840735e+00  1.15840735e+00  1.16840735e+00
  1.17840735e+00  1.18840735e+00  1.19840735e+00]

The Matlab script converges in a splut of a second, while my algorithm seems to run for a very long time. The output error is very large since the value of r is too small (see output above).



Solution 1:[1]

I actually happened to port most of the OCamCalib toolbox over to Python at some point, so here's what I ended up with (edited a bit to match your naming):

import cv2
import numpy as np


def find_inverse_polynome(poly_coefficients, radius, N=1, threshold_error=0.01):
    max_error = np.inf
    while max_error > threshold_error:
        N += 1
        poly, error = compute_inverse_polynome(poly_coefficients, radius, N)
        max_error = error.max()
    return poly, error, N


def compute_inverse_polynome(poly_coefficients, radius, N):
    theta = np.arange(-np.pi / 2, 1.2, 0.01)
    r = inverse_poly(poly_coefficients, theta)
    valid = r < radius
    theta = theta[valid]
    r = r[valid]
    poly = np.polyfit(theta, r, N)
    error = np.abs(r - np.polyval(poly, theta))  # approximation of error in pixels
    return poly, error


def inverse_poly(poly_coefficients, theta):
    m = np.tan(theta)
    r = np.zeros(len(m))
    poly_coef = poly_coefficients[::-1]
    poly_coef_tmp = poly_coef.copy()
    for i in range(len(m)):
        poly_coef_tmp[-2] = poly_coef[-2] - m[i]
        rho_tmp = cv2.solvePoly(poly_coef_tmp[::-1], maxIters=50)[1][:, 0]
        res = rho_tmp[(rho_tmp[:, 0] > 0) & (np.abs(rho_tmp[:, 1]) < 1e-10), 0]
        r[i] = np.min(res) if len(res) > 0 else np.inf
    return r

This makes use of cv2.solvePoly() instead of np.roots() due to the OpenCV's version being several times faster for some reason.

Sources

This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.

Source: Stack Overflow

Solution Source
Solution 1 Martin Valgur