'Correctness of chunked cosine distance / similarity methods using just Numpy

I'm trying to implement chunked cosine similarity / distance computation using just numpy.

The cosine1 method is taken from this SO post and adapted slightly for broadcasting since I'm doing chunked computation.

The cosine2 method is the intuitive method using the simple definition of the angle between two vectors.

The cosine3 method is scipy.spatial.distance.cdist(A, B, 'cosine').

NOTE: cosine1 and cosine2 are computing similarity while cosine3 is computing distance...I left them as is since I found it easier to compare output due to rounding differences when subtracting from 1.

cosine2 and cosine3 corroborate the correctness of the other and the chunked computation returns the same result as the single-pass operation. I don't want to depend on scipy so I'm leaning towards implementing cosine2 unless someone points out some issue with it.

What I really want to know is:

(1) Why does cosine1 produce the wrong answer despite it being a generally approved of method in the aforementioned SO post? My hunch is that I'm messing up the broadcasting changes added to support chunked computation.

(2) Why does the chunked computation of cosine1 produce results inconsistent with the single-pass computation while every other method produces identical output between the chunked and single-pass computation?

(3) Is cosine2 correct?

Code:

import numpy as np
from scipy.spatial import distance
np.set_printoptions(linewidth=999)


def compute_similarities(A, B, method="euclidean", chunk=0):
    return Methods()(A, B, method=method, chunk=chunk)


class Methods():
    def __init__(self):
        pass

    def euclidean(self, a, b):
        return np.linalg.norm(a[:, None, :] - b[None, :, :], axis=-1)

    def cosine1(self, A, B):
        similarity = np.dot(B, A.T)
        square_mag = np.diag(similarity)
        inv_square_mag = 1 / square_mag
        inv_square_mag[np.isinf(inv_square_mag)] = 0
        inv_mag = np.sqrt(inv_square_mag)
        cosine = similarity * inv_mag[np.newaxis, :]  # something funny here...

        return cosine.T * inv_mag[:, np.newaxis]      # ...or here

    def cosine2(self, A, B):
        return np.dot(A, B.T) / (np.linalg.norm(A, axis=1)[:, np.newaxis] * np.linalg.norm(B, axis=1)[np.newaxis, :])

    def cosine3(self, A, B):
        return distance.cdist(A, B, 'cosine')

    def __call__(self, A, B, method='euclidean', chunk=0):
        dist = getattr(self, method)
        a = np.array(A)
        b = a if np.array_equal(A, B) else np.array(B)
        chunks = a.shape[0] // (chunk if chunk else 1)

        if not (chunk and chunks):
            return dist(a, b)

        dists = np.zeros((a.shape[0], b.shape[0]))
        for i in range(chunks):
            _a = a[(i*chunk):(i*chunk)+chunk]
            dists[(i*chunk):(i*chunk)+chunk] = dist(_a, b)

        if a.shape[0] % chunk != 0:
            dists[(i*chunk)+chunk:] = dist(a[(i*chunk)+chunk:], b)

        return dists


if __name__ == '__main__':
    A = np.random.uniform(0, 1, (4, 3))

    methods = ['euclidean', 'cosine1', 'cosine2', 'cosine3']
    for method in methods:
        print(f"{'-'*10} {method} {'-'*(79-len(method))}\none chunk...")
        print(compute_similarities(A, A, method=method, chunk=A.shape[0]), end='\n\n')

        print("two chunks...")
        print(compute_similarities(A, A, method=method, chunk=A.shape[0] // 2), end='\n\n\n')

Output:

---------- euclidean ----------------------------------------------------------------------
one chunk...
[[0.         0.92371109 0.60656914 0.83801003]
 [0.92371109 0.         0.65194097 0.48798021]
 [0.60656914 0.65194097 0.         0.70142247]
 [0.83801003 0.48798021 0.70142247 0.        ]]

two chunks...
[[0.         0.92371109 0.60656914 0.83801003]
 [0.92371109 0.         0.65194097 0.48798021]
 [0.60656914 0.65194097 0.         0.70142247]
 [0.83801003 0.48798021 0.70142247 0.        ]]


---------- cosine1 ------------------------------------------------------------------------
one chunk...
[[1.         0.81289633 1.27765755 0.53644275]
 [0.49578501 1.         0.9536029  0.690402  ]
 [0.64123831 0.78471929 1.         0.58098557]
 [0.59124435 1.24763468 1.2758628  1.        ]]

two chunks...
[[1.         0.81289633 1.27765755 0.53644275]
 [0.49578501 1.         0.9536029  0.690402  ]
 [1.         1.22375609 1.55948261 0.90603689]
 [0.4738922  1.         1.02262531 0.80151668]]


---------- cosine2 ------------------------------------------------------------------------
one chunk...
[[1.         0.63483999 0.90514252 0.56317736]
 [0.63483999 1.         0.86504947 0.92809993]
 [0.90514252 0.86504947 1.         0.86096334]
 [0.56317736 0.92809993 0.86096334 1.        ]]

two chunks...
[[1.         0.63483999 0.90514252 0.56317736]
 [0.63483999 1.         0.86504947 0.92809993]
 [0.90514252 0.86504947 1.         0.86096334]
 [0.56317736 0.92809993 0.86096334 1.        ]]


---------- cosine3 ------------------------------------------------------------------------
one chunk...
[[0.00000000e+00 3.65160008e-01 9.48574836e-02 4.36822638e-01]
 [3.65160008e-01 0.00000000e+00 1.34950528e-01 7.19000737e-02]
 [9.48574836e-02 1.34950528e-01 0.00000000e+00 1.39036660e-01]
 [4.36822638e-01 7.19000737e-02 1.39036660e-01 1.11022302e-16]]

two chunks...
[[0.00000000e+00 3.65160008e-01 9.48574836e-02 4.36822638e-01]
 [3.65160008e-01 0.00000000e+00 1.34950528e-01 7.19000737e-02]
 [9.48574836e-02 1.34950528e-01 0.00000000e+00 1.39036660e-01]
 [4.36822638e-01 7.19000737e-02 1.39036660e-01 1.11022302e-16]]


Sources

This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.

Source: Stack Overflow

Solution Source