'Creating a symmetric matrix in R
I have a matrix in R that is supposed to be symmetric, however, due to machine precision the matrix is never symmetric (the values differ by around 10^-16). Since I know the matrix is symmetric I have been doing this so far to get around the problem:
s.diag = diag(s)
s[lower.tri(s,diag=T)] = 0
s = s + t(s) + diag(s.diag,S)
Is there a better one line command for this?
Solution 1:[1]
Is the workaround really necessary if the values only differ by that much?
Someone pointed out that my previous answer was wrong. I like some of the other ones better, but since I can't delete this one (accepted by a user who left), here's yet another solution using the micEcon
package:
symMatrix(s[upper.tri(s, TRUE)], nrow=nrow(s), byrow=TRUE)
Solution 2:[2]
s<-matrix(1:25,5)
s[lower.tri(s)] = t(s)[lower.tri(s)]
Solution 3:[3]
You can force the matrix to be symmetric using forceSymmetric
function in Matrix
package in R:
library(Matrix)
x<-Matrix(rnorm(9), 3)
> x
3 x 3 Matrix of class "dgeMatrix"
[,1] [,2] [,3]
[1,] -1.3484514 -0.4460452 -0.2828216
[2,] 0.7076883 -1.0411563 0.4324291
[3,] -0.4108909 -0.3292247 -0.3076071
A <- forceSymmetric(x)
> A
3 x 3 Matrix of class "dsyMatrix"
[,1] [,2] [,3]
[1,] -1.3484514 -0.4460452 -0.2828216
[2,] -0.4460452 -1.0411563 0.4324291
[3,] -0.2828216 0.4324291 -0.3076071
Solution 4:[4]
s<-matrix(1:25,5)
pmean <- function(x,y) (x+y)/2
s[] <- pmean(s, matrix(s, nrow(s), byrow=TRUE))
s
#-------
[,1] [,2] [,3] [,4] [,5]
[1,] 1 4 7 10 13
[2,] 4 7 10 13 16
[3,] 7 10 13 16 19
[4,] 10 13 16 19 22
[5,] 13 16 19 22 25
Solution 5:[5]
I was curious to compare all the methods, so ran a quick microbenchmark
. Clearly, the simplest 0.5 * (S + t(S))
is the fastest.
The specific function Matrix::forceSymmetric()
is sometimes slightly faster, but it returns an object of a different class (dsyMatrix
instead of matrix
), and converting back to matrix
takes a lot of time (although one might argue that it is a good idea to keep the output as dsyMatrix
for further gains in computation).
S <-matrix(1:50^2,50)
pick_lower <- function(M) M[lower.tri(M)] = t(M)[lower.tri(M)]
microbenchmark::microbenchmark(micEcon=miscTools::symMatrix(S[upper.tri(S, TRUE)], nrow=nrow(S), byrow=TRUE),
Matri_raw =Matrix::forceSymmetric(S),
Matri_conv =as.matrix(Matrix::forceSymmetric(S)),
pick_lower = pick_lower(S),
base =0.5 * (S + t(S)),
times=100)
#> Unit: microseconds
#> expr min lq mean median uq max neval cld
#> micEcon 62.133 74.7515 136.49538 104.2430 115.6950 3581.001 100 a
#> Matri_raw 14.766 17.9130 24.15157 24.5060 26.6050 63.939 100 a
#> Matri_conv 46.767 59.8165 5621.96140 66.3785 73.5380 555393.346 100 a
#> pick_lower 27.907 30.7930 235.65058 48.9760 53.0425 12484.779 100 a
#> base 10.771 12.4535 16.97627 17.1190 18.3175 47.623 100 a
Created on 2021-02-08 by the reprex package (v1.0.0)
Solution 6:[6]
as.dist()
will overwrite the upper triangle of a matrix with the lower one and replace the diagonal with zeros. This method only works on numeric matrices.
mat <- matrix(1:25, 5)
unname(`diag<-`(as.matrix(as.dist(mat)), diag(mat)))
# [,1] [,2] [,3] [,4] [,5]
# [1,] 1 2 3 4 5
# [2,] 2 7 8 9 10
# [3,] 3 8 13 14 15
# [4,] 4 9 14 19 20
# [5,] 5 10 15 20 25
Solution 7:[7]
Inspired by user3318600
s<-matrix(1:25,5)
s[lower.tri(s)]<-s[upper.tri(s)]
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
Solution | Source |
---|---|
Solution 1 | |
Solution 2 | user3318600 |
Solution 3 | Metrics |
Solution 4 | IRTFM |
Solution 5 | Matifou |
Solution 6 | Darren Tsai |
Solution 7 | sippstress |