'FastAPI asynchronous background tasks blocks other requests?
I want to run a simple background task in FastAPI, which involves some computation before dumping it into the database. However, the computation would block it from receiving any more requests.
from fastapi import BackgroundTasks, FastAPI
app = FastAPI()
db = Database()
async def task(data):
otherdata = await db.fetch("some sql")
newdata = somelongcomputation(data,otherdata) # this blocks other requests
await db.execute("some sql",newdata)
@app.post("/profile")
async def profile(data: Data, background_tasks: BackgroundTasks):
background_tasks.add_task(task, data)
return {}
What is the best way to solve this issue?
Solution 1:[1]
Your task
is defined as async
, which means fastapi (or rather starlette) will run it in the asyncio event loop.
And because somelongcomputation
is synchronous (i.e. not waiting on some IO, but doing computation) it will block the event loop as long as it is running.
I see a few ways of solving this:
Use more workers (e.g.
uvicorn main:app --workers 4
). This will allow up to 4somelongcomputation
in parallel.Rewrite your task to not be
async
(i.e. define it asdef task(data): ...
etc). Then starlette will run it in a separate thread.Use
fastapi.concurrency.run_in_threadpool
, which will also run it in a separate thread. Like so:from fastapi.concurrency import run_in_threadpool async def task(data): otherdata = await db.fetch("some sql") newdata = await run_in_threadpool(lambda: somelongcomputation(data, otherdata)) await db.execute("some sql", newdata)
- Or use
asyncios
'srun_in_executor
directly (whichrun_in_threadpool
uses under the hood):
You could even pass in aimport asyncio async def task(data): otherdata = await db.fetch("some sql") loop = asyncio.get_running_loop() newdata = await loop.run_in_executor(None, lambda: somelongcomputation(data, otherdata)) await db.execute("some sql", newdata)
concurrent.futures.ProcessPoolExecutor
as the first argument torun_in_threadpool
to run it in a separate process.
- Or use
Spawn a separate thread / process yourself. E.g. using
concurrent.futures
.Use something more heavy-handed like celery. (Also mentioned in the fastapi docs here).
Solution 2:[2]
Read this issue.
Also in the example below, my_model.function_b
could be any blocking function or process.
TL;DR
from starlette.concurrency import run_in_threadpool
@app.get("/long_answer")
async def long_answer():
rst = await run_in_threadpool(my_model.function_b, arg_1, arg_2)
return rst
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
Solution | Source |
---|---|
Solution 1 | |
Solution 2 | Zhivar Sourati |