'Generate colors of noise in Python
I would like to use Python to generate different colors of noise, just like Wikipedia mentions : https://en.wikipedia.org/wiki/Colors_of_noise.
For example, White, Pink, Brownian, Blue and Violet noise. And would like to have similar spectrums just like the website.
It would be a great help if I could just adjust a few parameters to get it done. Any links or tips would be very appreciated! Thanks a lot.
Solution 1:[1]
Let's use numpy to compute the noise and matplotlib to plot the results
import numpy as np
import matplotlib.pyplot as plt
def plot_spectrum(s):
f = np.fft.rfftfreq(len(s))
plt.loglog(f, np.abs(np.fft.rfft(s)))
This is a good use case for a python decorator
def noise_psd(N, psd = lambda f: 1):
X_white = np.fft.rfft(np.random.randn(N));
S = psd(np.fft.rfftfreq(N))
# Normalize S
S = S / np.sqrt(np.mean(S**2))
X_shaped = X_white * S;
return np.fft.irfft(X_shaped);
def PSDGenerator(f):
return lambda N: noise_psd(N, f)
@PSDGenerator
def white_noise(f):
return 1;
@PSDGenerator
def blue_noise(f):
return np.sqrt(f);
@PSDGenerator
def violet_noise(f):
return f;
@PSDGenerator
def brownian_noise(f):
return 1/np.where(f == 0, float('inf'), f)
@PSDGenerator
def pink_noise(f):
return 1/np.where(f == 0, float('inf'), np.sqrt(f))
The function PSDGenrator
takes as input a function and returns another function that will produce a random signal with the power spectrum shaped accordingly to the given function.
The line S = S / np.sqrt(np.mean(S**2))
makes sure that the colored noise will preserve the energy of the white noise.
Let's test
plt.figure(figsize=(8, 8))
for G in [brownian_noise, pink_noise, white_noise, blue_noise, violet_noise]:
plot_spectrum(G(2**14))
plt.legend(['brownian', 'pink', 'white', 'blue', 'violet'])
plt.ylim([1e-3, None]);
Solution 2:[2]
There is a library to work with colored noise in python
https://pypi.org/project/colorednoise/
!pip install colorednoise
import colorednoise as cn
from matplotlib import pylab as plt
#input values
beta = 0 # the exponent: 0=white noite; 1=pink noise; 2=red noise (also "brownian noise")
samples = 2**16 # number of samples to generate (time series extension)
#Deffing some colores
A = cn.powerlaw_psd_gaussian(beta, samples)
#Ploting first subfiure
plt.plot(A, color='black', linewidth=1)
plt.title('Colored Noise for ?='+str(beta))
plt.xlabel('Samples (time-steps)')
plt.ylabel('Amplitude(t)', fontsize='large')
plt.xlim(1,5000)
plt.show()
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
Solution | Source |
---|---|
Solution 1 | |
Solution 2 | L.O.Barauna |