'How can I code something like a switch for std::variant?
I have some var = std::variant<std::monostate, a, b, c>
when a, b, c
is some types.
How, at runtime, do I check what type var
contains?
In the official documentation I found information that if var
contains a
type and I write std::get<b>(var)
I get an exception. So I thought about this solution:
try {
std::variant<a>(var);
// Do something
} catch(const std::bad_variant_access&) {
try {
std::variant<b>(var);
// Do something else
} catch(const std::bad_variant_access&) {
try {
std::variant<c>(var);
// Another else
} catch (const std::bad_variant_access&) {
// std::monostate
}
}
}
But it's so complicated and ugly! Is there a simpler way to check what type std::variant
contains?
Solution 1:[1]
The most simple way is to switch
based on the current std::variant::index()
. This approach requires your types (std::monostate
, A
, B
, C
) to always stay in the same order.
// I omitted C to keep the example simpler, the principle is the same
using my_variant = std::variant<std::monostate, A, B>;
void foo(my_variant &v) {
switch (v.index()) {
case 0: break; // do nothing because the type is std::monostate
case 1: {
doSomethingWith(std::get<A>(v));
break;
}
case 2: {
doSomethingElseWith(std::get<B>(v));
break;
}
}
}
If your callable works with any type, you can also use std::visit
:
void bar(my_variant &v) {
std::visit([](auto &&arg) -> void {
// Here, arg is std::monostate, A or B
// This lambda needs to compile with all three options.
// The lambda returns void because we don't modify the variant, so
// we could also use const& arg.
}, v);
}
If you don't want std::visit
to accept std::monostate
, then just check if the index
is 0. Once again, this relies on std::monostate
being the first type of the variant, so it is good practice to always make it the first.
You can also detect the type using if-constexpr
inside the callable. With this approach, the arguments don't have to be in the same order anymore:
void bar(my_variant &v) {
std::visit([](auto &&arg) -> my_variant {
using T = std::decay_t<decltype(arg)>;
if constexpr (std::is_same_v<std::monostate, T>) {
return arg; // arg is std::monostate here
}
else if constexpr (std::is_same_v<A, T>) {
return arg + arg; // arg is A here
}
else if constexpr (std::is_same_v<B, T>) {
return arg * arg; // arg is B here
}
}, v);
}
Note that the first lambda returns void
because it just processes the current value of the variant. If you want to modify the variant, your lambda needs to return my_variant
again.
You could use an overloaded visitor inside std::visit
to handle A
or B
separately. See std::visit
for more examples.
Solution 2:[2]
std::visit
is the way to go:
There is even overloaded
to allow inlined visitor:
// helper type for the visitor #4
template<class... Ts> struct overloaded : Ts... { using Ts::operator()...; };
// explicit deduction guide (not needed as of C++20)
template<class... Ts> overloaded(Ts...) -> overloaded<Ts...>;
and so:
std::visit(overloaded{
[](std::monostate&){/*..*/},
[](a&){/*..*/},
[](b&){/*..*/},
[](c&){/*..*/}
}, var);
To use chained if-branches instead, you might used std::get_if
if (auto* v = std::get_if<a>(var)) {
// ...
} else if (auto* v = std::get_if<b>(var)) {
// ...
} else if (auto* v = std::get_if<c>(var)) {
// ...
} else { // std::monostate
// ...
}
Solution 3:[3]
You can use standard std::visit
Usage example:
#include <variant>
#include <iostream>
#include <type_traits>
struct a {};
struct b {};
struct c {};
int main()
{
std::variant<a, b, c> var = a{};
std::visit([](auto&& arg) {
using T = std::decay_t<decltype(arg)>;
if constexpr (std::is_same_v<T, a>)
std::cout << "is an a" << '\n';
else if constexpr (std::is_same_v<T, b>)
std::cout << "is a b" << '\n';
else if constexpr (std::is_same_v<T, c>)
std::cout << "is a c" << '\n';
else
std::cout << "is not in variant type list" << '\n';
}, var);
}
Solution 4:[4]
Well, with some macro magic, you can do something like:
#include <variant>
#include <type_traits>
#include <iostream>
#define __X_CONCAT_1(x,y) x ## y
#define __X_CONCAT(x,y) __X_CONCAT_1(x,y)
template <typename T>
struct __helper { };
// extract the type from a declaration
// we use function-type magic to get that: typename __helper<void ( (declaration) )>::type
// declaration is "int &x" for example, this class template extracts "int"
template <typename T>
struct __helper<void (T)> {
using type = std::remove_reference_t<T>;
};
#define variant_if(variant, declaration) \
if (bool __X_CONCAT(variant_if_bool_, __LINE__) = true; auto * __X_CONCAT(variant_if_ptr_, __LINE__) = std::get_if<typename __helper<void ( (declaration) )>::type>(&(variant))) \
for (declaration = * __X_CONCAT(variant_if_ptr_, __LINE__); __X_CONCAT(variant_if_bool_, __LINE__); __X_CONCAT(variant_if_bool_, __LINE__) = false)
#define variant_switch(variant) if (auto &__variant_switch_v = (variant); true)
#define variant_case(x) variant_if(__variant_switch_v, x)
int main() {
std::variant<int, long> v = 12;
std::variant<int, long> w = 32l;
std::cout << "variant_if test" << std::endl;
variant_if(v, int &x) {
std::cout << "int = " << x << std::endl;
}
else variant_if(v, long &x) {
std::cout << "long = " << x << std::endl;
}
std::cout << "variant_switch test" << std::endl;
variant_switch(v) {
variant_case(int &x) {
std::cout << "int = " << x << std::endl;
variant_switch (w) {
variant_case(int &x) {
std::cout << "int = " << x << std::endl;
}
variant_case(long &x) {
std::cout << "long = " << x << std::endl;
}
}
};
variant_case(long &x) {
std::cout << "long = " << x << std::endl;
variant_switch (w) {
variant_case(int &x) {
std::cout << "int = " << x << std::endl;
}
variant_case(long &x) {
std::cout << "long = " << x << std::endl;
}
}
};
}
return 0;
}
I tested this approach with GCC and Clang, no guarantees for MSVC.
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
Solution | Source |
---|---|
Solution 1 | |
Solution 2 | |
Solution 3 | anastaciu |
Solution 4 | jnbrq -Canberk Sönmez |