'How to add data labels to seaborn barplot? [duplicate]
I have the following code to produce a bar plot in seaborn
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
df = pd.DataFrame(np.random.randint(0,100,size=(100, 4)), columns=list('ABCD'))
print(df):
A B C D
0 15 21 13 5
1 14 94 99 14
2 11 11 13 69
3 27 90 37 6
4 51 93 92 24
.. .. .. .. ..
95 45 40 85 62
96 44 48 61 43
97 39 66 72 72
98 51 97 17 32
99 51 42 29 15
probbins = [0,10,20,30,40,50,60,70,80,90,100]
df['Groups'] = pd.cut(df['D'],bins=probbins)
plt.figure(figsize=(15,6))
chart = sns.barplot(x=df['Groups'], y=df['C'],estimator=sum,ci=None)
chart.set_title('Profit/Loss')
chart.set_xticklabels(chart.get_xticklabels(), rotation=30)
plt.show()
Which gives me:
How can I simply add data labels to this plot? Any help would be much appreciated!
Solution 1:[1]
As of matplotlib 3.4.0, we can now annotate bars with the new Axes.bar_label
.
In OP's code, chart
is an Axes
object, so we can just use:
chart = sns.barplot(data=df, x='Groups', y='C', estimator=sum, ci=None)
# new helper method to auto-label bars (matplotlib 3.4.0+)
chart.bar_label(chart.containers[0])
Note that a grouped bar chart (with hue
) would have multiple bar containers
, so in that case containers
would need to be iterated:
for container in chart.containers:
chart.bar_label(container)
Solution 2:[2]
For those intersted in how I solved it:
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
df = pd.DataFrame(np.random.randint(0,100,size=(100, 4)), columns=list('ABCD'))
print(df):
A B C D
0 31 11 65 15
1 83 21 5 87
2 16 6 81 41
3 91 78 95 70
4 26 51 26 61
.. .. .. .. ..
95 31 18 91 24
96 73 97 42 45
97 76 22 2 36
98 12 43 98 27
99 33 96 67 68
probbins = [0,10,20,30,40,50,60,70,80,90,100]
df['Groups'] = pd.cut(df['D'],bins=probbins)
plt.figure(figsize=(15,6))
chart = sns.barplot(x=df['Groups'], y=df['C'],estimator=sum,ci=None)
chart.set_title('Profit/Loss')
chart.set_xticklabels(chart.get_xticklabels(), rotation=30)
# annotation here
for p in chart.patches:
chart.annotate("%.0f" % p.get_height(), (p.get_x() + p.get_width() / 2., p.get_height()),
ha='center', va='center', fontsize=10, color='black', xytext=(0, 5),
textcoords='offset points')
plt.show()
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
Solution | Source |
---|---|
Solution 1 | |
Solution 2 | SOK |