'How to calculate this CRC using Python?

I need to calculate this CRC using Python for the communication with Aurora (ABB) solar inverter.

This is the document: http://www.drhack.it/images/PDF/AuroraCommunicationProtocol_4_2.pdf in the last page there are the instructions to calculate the CRC, i need to do that in python.

The message that i have is

MESSAGE_GRID_VOLTAGE = bytes.fromhex("023b010000000000")

The results should be:

CRC_L = FF

CRC_H = 2C

Then i need to send the message complete with the CRC like this:

MESSAGE_GRID_VOLTAGE = bytes.fromhex("023b010000000000ff2c")

How can i do that in python? Thanks!

Here is the code that i tried:

message = "023b010000000000"

BccLo= int ("FF",16)
BccHi= int("FF", 16)

New = int(message, 16)

New = New ^ BccLo
Tmp=New << 4
New=Tmp ^ New
Tmp=New >> 5
BccLo=BccHi
BccHi= New ^ Tmp
Tmp=New << 3
BccLo=BccLo ^ Tmp
Tmp=New >> 4
BccLo=BccLo ^ Tmp

CRC_L = ~BccLo
CRC_H = ~BccHi


Solution 1:[1]

According to the cited document, the algorithm is actually a standard 16 Bit CCITT CRC. This can be calculated with crcmod.

Here you go:

import crcmod

# this is a standard CCITT CRC even if it does not look like
# (crcmod applies xorOut to initCrc, so initCrc is in reality 0xffff, not 0)
_CRC_FUNC = crcmod.mkCrcFun(0x11021, initCrc=0, xorOut=0xffff)

data = bytearray.fromhex("023b010000000000")
crc = _CRC_FUNC(data)
data.append(crc & 0xff)
data.append(((crc >> 8) & 0xff))

print (data.hex())

Output: 023b010000000000ff2c

Solution 2:[2]

You need to apply that algorithm to each byte of your message. A slight complication is that the algorithm given in the Aurora PDF file assumes the calculation is being performed with 8 bit unsigned arithmetic. To handle that in Python we can use a bitmask of 0xff. Here's a slightly optimized version of that code.

def crc_16(msg):
    lo = hi = 0xff
    mask = 0xff
    for new in msg:
        new ^= lo
        new ^= (new << 4) & mask
        tmp = new >> 5
        lo = hi
        hi = new ^ tmp
        lo ^= (new << 3) & mask
        lo ^= new >> 4
    lo ^= mask
    hi ^= mask
    return hi << 8 | lo

# Test

msg = bytes.fromhex("023b010000000000")
out = crc_16(msg)
hi, lo = out >> 8, out & 0xff
print('{:04x} = {:02x} {:02x}'.format(out, hi, lo))

output

2cff = 2c ff

The above code works, but there are simpler ways to calculate CRCs. And we can use a table to speed up the process, if you need to calculate a lot of CRCs.

As the Wikipedia Cyclic redundancy check article mentions, CRC algorithms are usually specified in terms of a polynomial encoded as a hexadecimal number. Here's a function that does that using the reversed polynomial representation.

def crc_16_CCITT(msg):
    poly = 0x8408
    crc = 0xffff
    for byte in msg:
        for _ in range(8):
            if (byte ^ crc) & 1:
                crc = (crc >> 1) ^ poly
            else:
                crc >>= 1
            byte >>= 1
    return crc ^ 0xffff

To speed things up, we can compute a table.

def make_crc_table():
    poly = 0x8408
    table = []
    for byte in range(256):
        crc = 0
        for bit in range(8):
            if (byte ^ crc) & 1:
                crc = (crc >> 1) ^ poly
            else:
                crc >>= 1
            byte >>= 1
        table.append(crc)
    return table

table = make_crc_table()

def crc_16_fast(msg):
    crc = 0xffff
    for byte in msg:
        crc = table[(byte ^ crc) & 0xff] ^ (crc >> 8)
    return crc ^ 0xffff

# Test

msg = bytes.fromhex("023b010000000000")
out = crc_16_fast(msg)
hi, lo = out >> 8, out & 0xff
print('{:04x} = {:02x} {:02x}'.format(out, hi, lo))

If you like, you can print the table & paste it into your script, so that you don't have to compute the table every time you run the script.

Solution 3:[3]

There are many version crc algorithms, and you can convert the one from other lanuage, e.x. C code.

table_crc_hi = [
    0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,
    0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
    0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
    0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
    0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1,
    0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
    0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1,
    0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
    0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,
    0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40,
    0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1,
    0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
    0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,
    0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40,
    0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
    0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
    0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,
    0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
    0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
    0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
    0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
    0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40,
    0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1,
    0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
    0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,
    0x80, 0x41, 0x00, 0xC1, 0x81, 0x40]

table_crc_lo = [
    0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06,
    0x07, 0xC7, 0x05, 0xC5, 0xC4, 0x04, 0xCC, 0x0C, 0x0D, 0xCD,
    0x0F, 0xCF, 0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09,
    0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A,
    0x1E, 0xDE, 0xDF, 0x1F, 0xDD, 0x1D, 0x1C, 0xDC, 0x14, 0xD4,
    0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3,
    0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3,
    0xF2, 0x32, 0x36, 0xF6, 0xF7, 0x37, 0xF5, 0x35, 0x34, 0xF4,
    0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A,
    0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38, 0x28, 0xE8, 0xE9, 0x29,
    0xEB, 0x2B, 0x2A, 0xEA, 0xEE, 0x2E, 0x2F, 0xEF, 0x2D, 0xED,
    0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26,
    0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60,
    0x61, 0xA1, 0x63, 0xA3, 0xA2, 0x62, 0x66, 0xA6, 0xA7, 0x67,
    0xA5, 0x65, 0x64, 0xA4, 0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F,
    0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68,
    0x78, 0xB8, 0xB9, 0x79, 0xBB, 0x7B, 0x7A, 0xBA, 0xBE, 0x7E,
    0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x75, 0xB5,
    0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71,
    0x70, 0xB0, 0x50, 0x90, 0x91, 0x51, 0x93, 0x53, 0x52, 0x92,
    0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54, 0x9C, 0x5C,
    0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E, 0x5A, 0x9A, 0x9B, 0x5B,
    0x99, 0x59, 0x58, 0x98, 0x88, 0x48, 0x49, 0x89, 0x4B, 0x8B,
    0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C,
    0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42,
    0x43, 0x83, 0x41, 0x81, 0x80, 0x40]

def crc16(buffer,  start, buffer_length):
    crc_hi = 0xFF
    crc_lo = 0xFF 
    bufferIndex = start
    while True:
        if(buffer_length<=0):
            break
        buffer_length-=1
        i = crc_hi ^ buffer[bufferIndex]
        bufferIndex += 1
        crc_hi = crc_lo ^ table_crc_hi[i]
        crc_lo = table_crc_lo[i]
    return (crc_hi << 8 | crc_lo)
    #return [crc_hi, crc_lo]

Then use it as follow.

buf= [0x2B,0xF0,0x2F,0x15,0x19,0x97,0x56,0x7,0xFE,0x0,0x53,0x83,0xBB,0x0,0x8B,0x2A,0xD3,0xDF,0x88]
crc16(buf,0,len(buf))

Solution 4:[4]

print("\n",37*"-","SENDER SIDE","-"*37)
def xor(a, b):
 result = []
 for i in range(1, len(b)):
  if a[i] == b[i]:
   result.append('0')
  else:
   result.append('1')
 return ''.join(result)
def mod2div(divident, divisor):
 pick = len(divisor)
 tmp = divident[0: pick]
 while pick < len(divident):
  if tmp[0] == '1':
   tmp = xor(divisor, tmp) + divident[pick]
  else:
   tmp = xor('0' * pick, tmp) + divident[pick]
  pick += 1
 if tmp[0] == '1':
  tmp = xor(divisor, tmp)
 else:
  tmp = xor('0' * pick, tmp)
 checkword = tmp
 return checkword
def encodeData(data, key):
 l_key = len(key)
 appended_data = data + '0' * (l_key - 1)
 remainder = mod2div(appended_data, key)
 codeword = data + remainder
 print("CRC/Remainder obtained after encoding: ", remainder)
 print("Data to be transmitted at the sender side: ", codeword)
data= input("Enter the Data Bits: ")
key = input("Enter the Divisor Bits: ")
encodeData(data, key)
print("\n",36*"-","RECEIVER SIDE","-"*36)
def decodeData(data, key):
 l_key = len(key)
 appended_data = data + '0' * (l_key - 1)
 remainder = mod2div(appended_data, key)
 codeword = data + remainder
 print("CRC/Remainder obtained after decoding: ", remainder)
 temp = "0" * (len(key)-1)
 if remainder == temp:
  print("If CRC/Remainder are '0'...given data received is Correct.")
 else:
  print("If CRC/Remainder are not '0'...given data received is Wrong...Please try retransmission.")
  data= input("Enter the Data Bits:")
  key = input("Enter the Divisor Bits:")
  decodeData(data, key)
  print("\n",40*"-","DONE","-"*40,"\n")

Sources

This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.

Source: Stack Overflow

Solution Source
Solution 1
Solution 2
Solution 3
Solution 4 RUGVED SHINDE