'How to fix 'numpy.ndarray' object has no attribute 'get_figure' when plotting subplots
I have written the following code to plot 6 pie charts in different subplots, but I get an error. This code works correctly if I use it to plot only 2 charts, but produces an an error for anything more than that.
I have 6 categorical variables in my dataset, the names of which are stored in the list cat_cols
. The charts are to be plotted from the training data train
.
CODE
fig, axes = plt.subplots(2, 3, figsize=(24, 10))
for i, c in enumerate(cat_cols):
train[c].value_counts()[::-1].plot(kind = 'pie', ax=axes[i], title=c, autopct='%.0f', fontsize=18)
axes[i].set_ylabel('')
plt.tight_layout()
ERROR
AttributeError: 'numpy.ndarray' object has no attribute 'get_figure'
How do we rectify this?
Solution 1:[1]
- The issue is
plt.subplots(2, 3, figsize=(24, 10))
creates two groups of 3 subplots, not one group of six subplots.
array([[<AxesSubplot:xlabel='radians'>, <AxesSubplot:xlabel='radians'>, <AxesSubplot:xlabel='radians'>],
[<AxesSubplot:xlabel='radians'>, <AxesSubplot:xlabel='radians'>, <AxesSubplot:xlabel='radians'>]], dtype=object)
- Unpack all of the subplot arrays from
axes
, usingaxes.ravel()
.numpy.ravel
, which returns a flattened array.- A list comprehension will also work,
axe = [sub for x in axes for sub in x]
- In practical terms,
axes.ravel()
,axes.flat
, andaxes.flatten()
, can be used similarly. See What is the difference between flatten and ravel functions in numpy? & numpy difference between flat and ravel().
- Assign each plot to one of the subplots in
axe
. - How to resolve AttributeError: 'numpy.ndarray' object has no attribute 'get_figure' when plotting subplots is a similar issue.
import pandas as pd
import numpy as np
# sinusoidal sample data
sample_length = range(1, 6+1)
rads = np.arange(0, 2*np.pi, 0.01)
data = np.array([np.sin(t*rads) for t in sample_length])
df = pd.DataFrame(data.T, index=pd.Series(rads.tolist(), name='radians'), columns=[f'freq: {i}x' for i in sample_length])
# crate the figure and axes
fig, axes = plt.subplots(2, 3, figsize=(24, 10))
# unpack all the axes subplots
axe = axes.ravel()
# assign the plot to each subplot in axe
for i, c in enumerate(df.columns):
df[c].plot(ax=axe[i])
Solution 2:[2]
As was mentioned, you get two groups of 3 plots with plt.subplots
. To create a one dimensional array of axes, you can also use numpy.flatten method:
fig, axes = plt.subplots(2, 3, figsize=(24, 10))
axe = axes.flatten()
for i, c in enumerate(cat_cols):
train[c].value_counts()[::-1].plot(kind = 'pie', ax=axe[i], title=c,
autopct='%.0f', fontsize=18)
axe[i].set_ylabel('')
plt.tight_layout()
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
Solution | Source |
---|---|
Solution 1 | |
Solution 2 |