'How to generate the worst case for disjoint set with only path compression?
A disjoint set with only path compression implemented is like this:
// In cpp.
int Find(int x) { return f[x] == x ? x : f[x] = Find(f[x]); }
int Union(int a, int b) { f[Find(a)] = Find(b); }
From wiki I've learned about it has a worst complexity of O(n+f*(1+logn))
. So how do I reach the worst complexity?
Solution 1:[1]
I assume you mean this
Using path compression alone gives a worst-case running time of O(n+f*(1+log2+f/n)),[10] for a sequence of n MakeSet operations (and hence at most n-1 Union operations) and f Find operations.
Where
[10] [Introduction to Algorithms]1
And I would guess it is when you always add to the longest path.
Solution 2:[2]
When the input is skewed in a way no compression can be applied, the worst case run time would be O(n)
.
public static void main(String[] args) throws Exception {
UnionFind uf = new UnionFind(10);
uf.union(0, 1);
uf.union(1, 2);
uf.union(2, 3);
uf.union(3, 4);
uf.union(4, 5);
uf.union(5, 6);
uf.union(6, 7);
uf.union(7, 8);
uf.union(8, 9);
System.out.println(Arrays.toString(uf.root)); //[1, 2, 3, 4, 5, 6, 7, 8, 9, 9]
}
static class UnionFind {
public int[] root;
public UnionFind(int size) {
root = new int[size];
for (int i = 0; i < size; i++) {
root[i] = i;
}
}
public int find(int x) {
if (x == root[x]) {
return x;
}
return root[x] = find(root[x]);
}
public void union(int x, int y) {
int rootX = find(x);
int rootY = find(y);
if (rootX != rootY) {
root[rootX] = rootY;
}
}
}
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
Solution | Source |
---|---|
Solution 1 | Surt |
Solution 2 | chakwok |