'How to make a simple Vandermonde matrix with numpy?
My question is how to make a vandermonde matrix. This is the definition: In linear algebra, a Vandermonde matrix, named after Alexandre-Théophile Vandermonde, is a matrix with the terms of a geometric progression in each row, i.e., an m × n matrix
I would like to make a 4*4 version of this.
So farI have defined values but only for one row as follows
a=2
n=4
for a in range(n):
for i in range(n):
v.append(a**i)
v = np.array(v)
print(v)
I dont know how to scale this. Please help!
Solution 1:[1]
Given a starting column a
of length m
you can create a Vandermonde matrix v
with n
columns a**0
to a**(n-1)
like so:
import numpy as np
m = 4
n = 4
a = range(1, m+1)
v = np.array([a]*n).T**range(n)
print(v)
#[[ 1 1 1 1]
# [ 1 2 4 8]
# [ 1 3 9 27]
# [ 1 4 16 64]]
Solution 2:[2]
As proposed by michael szczesny you could use numpy.vander. But this will not be according to the definition on Wikipedia.
x = np.array([1, 2, 3, 5])
N = 4
np.vander(x, N)
#array([[ 1, 1, 1, 1],
# [ 8, 4, 2, 1],
# [ 27, 9, 3, 1],
# [125, 25, 5, 1]])
So, you'd have to use numpy.fliplr aswell:
x = np.array([1, 2, 3, 5])
N = 4
np.fliplr(np.vander(x, N))
#array([[ 1, 1, 1, 1],
# [ 1, 2, 4, 8],
# [ 1, 3, 9, 27],
# [ 1, 5, 25, 125]])
This could also be achieved without numpy using nested list comprehensions:
x = [1, 2, 3, 5]
N = 4
[[xi**i for i in range(N)] for xi in x]
# [[1, 1, 1, 1],
# [1, 2, 4, 8],
# [1, 3, 9, 27],
# [1, 5, 25, 125]]
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
Solution | Source |
---|---|
Solution 1 | Stef |
Solution 2 | Punocchio |