'Ingesting An Null Int Column: Pandas and Pandera
I am using pandas with pandera for schema validation, but I've run into a problem since there's a null integer column in the data.
from prefect import task, Flow #type:ignore
from pandera import Check, Column, DataFrameSchema
import prefect
import pandas as pd
import pandera as pa
import numpy as np
def pschema(d):
logger = prefect.utilities.logging.get_logger() # type: ignore
engine = connect_db(prefect.config.kv.p.staging_db_constring, logger) #type:ignore
table_name = "MyTable"
org = "myOrg"
k = {}
df = pd.read_sql(
f"SELECT NameStrNotQuoted, FieldTypeName, SizeStr, Precision, Scale FROM dbo.vw_cx_meta WHERE [Table] = '{table_name}' and Organization='{org}' AND ETL_Active = 1",
engine,
)
for row in df.itertuples(index=False):
if row.FieldTypeName == "int":
k.update({row.NameStrNotQuoted:Column(int,Check(lambda x: pd.Series([x.fillna(0)],dtype='Int64')),coerce=True, nullable=True)})
elif row.FieldTypeName == 'bit':
k.update({row.NameStrNotQuoted:Column(pa.Bool, coerce=True)})
sch = DataFrameSchema(k)
sch.validate(d)
return k
The errors:
ValueError: cannot convert float NaN to integer
.
.
.
File "/usr/local/lib/python3.8/site-packages/pandera/schemas.py", line 1789, in coerce_dtype
raise errors.SchemaError(
pandera.errors.SchemaError: Error while coercing 'CopySourceID' to type int64: Could not coerce <class 'pandas.core.series.Series'> data_container into type int64:
I am aware of pandas 'gotcha' with nulls in int columns and I've tried every permutation of using Check
's lambda function to solve this. Any help would be appreciated, thanks.
Solution 1:[1]
I just came across this, it's solvable by combination of Pandas nullable integer ("Int64" / https://pandas.pydata.org/docs/user_guide/integer_na.html) and coerce=True.
eg:
pa.Column("Int64",coerce=True)
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
Solution | Source |
---|---|
Solution 1 | Michal |