'Local file for Google Speech
I followed this page: https://cloud.google.com/speech/docs/getting-started
and I could reach the end of it without problems.
In the example though, the file 'uri':'gs://cloud-samples-tests/speech/brooklyn.flac' is processed.
What if I want to process a local file? In case this is not possible, how can I upload my .flac via command line?
Thanks
Solution 1:[1]
You're now able to process a local file by specifying a local path instead of the google storage one:
gcloud ml speech recognize '/Users/xxx/cloud-samples-tests/speech/brooklyn.flac' \ --language-code='en-US'
You can send this command by using the gcloud tool (https://cloud.google.com/speech-to-text/docs/quickstart-gcloud).
Solution 2:[2]
Solution found:
I created my own bucket (my_bucket_test), and I upload the file there via: gsutil cp speech.flac gs://my_bucket_test
Solution 3:[3]
If you don't want to create a bucket (costs extra time and money) - you can stream the local files. The following code is copied directly from the Google cloud docs:
def transcribe_streaming(stream_file):
"""Streams transcription of the given audio file."""
import io
from google.cloud import speech
client = speech.SpeechClient()
with io.open(stream_file, "rb") as audio_file:
content = audio_file.read()
# In practice, stream should be a generator yielding chunks of audio data.
stream = [content]
requests = (
speech.StreamingRecognizeRequest(audio_content=chunk) for chunk in stream
)
config = speech.RecognitionConfig(
encoding=speech.RecognitionConfig.AudioEncoding.LINEAR16,
sample_rate_hertz=16000,
language_code="en-US",
)
streaming_config = speech.StreamingRecognitionConfig(config=config)
# streaming_recognize returns a generator.
responses = client.streaming_recognize(
config=streaming_config,
requests=requests,
)
for response in responses:
# Once the transcription has settled, the first result will contain the
# is_final result. The other results will be for subsequent portions of
# the audio.
for result in response.results:
print("Finished: {}".format(result.is_final))
print("Stability: {}".format(result.stability))
alternatives = result.alternatives
# The alternatives are ordered from most likely to least.
for alternative in alternatives:
print("Confidence: {}".format(alternative.confidence))
print(u"Transcript: {}".format(alternative.transcript))
Here is the URL incase the package's function names are edited over time: https://cloud.google.com/speech-to-text/docs/streaming-recognize
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
Solution | Source |
---|---|
Solution 1 | |
Solution 2 | Giuseppe |
Solution 3 | User |