'Nearest intersection point to many lines c#
Based on the good work done [here][1] I am converting a simplified version of the python code to C#. Below is what I have so far (Sorry - I am new to c#). I am stuck on the last statement least squares equivalent in c#. Unfortunately it appears NumSharp hasn't incorporated least square code yet. The inputs to my least squares statement is a R matrix and q vector. I tried using the MathNet library but I can't get it to work with the inputs I have. Is there a better way in C# to compute this least squares? Thanks.
Ref: nearest intersection point to many lines in python
using MathNet.Numerics.LinearAlgebra;
using MathNet.Numerics.LinearRegression;
using NumSharp;
/*
//Python code below:
import numpy as np
def LS_intersect(p0,a0):
"""
:param p0 : Nx3 (x,y) position coordinates, z=1
:param a0 : angles in degrees for each point in p0
:return: least squares intersection point of N lines from eq. 13 in
http://cal.cs.illinois.edu/~johannes/research/LS_line_intersect.pdf
"""
# create direction vectors with magnitude = 1
n = []
for a in a0:
n.append([np.cos(np.radians(a)), np.sin(np.radians(a))])
n = np.array(n) #cos & sin of vectors
pos = p0[:,0:2] #vector (x,y) IP coordinates
# generate the array of all projectors
nnT = np.array([np.outer(nn,nn) for nn in n ])
ImnnT = np.eye(len(pos[0]))-nnT # orthocomplement projectors to n
# now generate R matrix and q vector
R = np.sum(ImnnT,axis=0)
q = np.sum(np.array([np.dot(m,x) for m,x in zip(ImnnT,pos)]),axis=0)
# and solve the least squares problem for the intersection point p
return np.linalg.lstsq(R,q,rcond=None)[0]
#sample data
pa = np.array([[-10.0, 10.0, 1. ],
[-18.0, -7.0, 1. ],
[-15.0, -15.0, 1. ]])
paa = [-45.0, 0.0, 45.0]
solution = LS_intersect(pa,paa)
print(solution)
#Answer should be: [ 5.44009282e-15 -3.50000000e+00]
Start C# code:
*/
// See https://aka.ms/new-console-template for more information
Console.WriteLine("Hello, World!");
//import numpy as np
//double LS_intersect(float a0)
//sample data
float[,] p0 = new float[,] { { -10.0f, 10.0f }, { -18.0f, -7.0f }, { -15.0f, -15.0f } };
float[] a0 = new float[] { -35.0f, 5.0f, 40.0f };
double[,] v = new double[a0.Length, 2];
for (int i = 0; i < a0.Length; i++)
{
v[i, 0] = Convert.ToDouble(Math.Cos(ConvertToRadians(a0[i])));
v[i, 1] = Convert.ToDouble(Math.Sin(ConvertToRadians(a0[i])));
}
double[,] n = (double[,])np.array(v); //array of cos & sin of direction vectors
// generate the array of all projectors
//nnT = np.array(np.outer(nn,nn) for nn in n );
double[][,] nnT = new double[n.GetLength(0)][,];
double[,] nn = new double[1, 2];
for (int i = 0; i < n.GetLength(0); i++)
{
nn[0, 0] = n[i, 0];
nn[0, 1] = n[i, 1];
nnT[i] = (double[,])np.array(np.outer(nn, nn));
}
// ImnnT = np.eye(len(pos[0]))-nnT # orthocomplement projectors to n
double[][,] ImnnT = new double[n.GetLength(0)][,];
for (int i = 0; i < n.GetLength(0); i++)
{
ImnnT[i] = (double[,])np.subtract(np.eye(2), np.array(nnT[i])); // orthocomplement projectors to n
}
// now generate R matrix and q vector
// R = np.sum(ImnnT,axis=0)
double[,] R = new double[2, 2];
for (int i = 0; i < n.GetLength(0); i++)
{
R = (double[,])np.add(R, ImnnT[i]);
}
//var q = np.sum(np.array(np.dot(m,x) for m,x in z.zip(ImnnT,p0)),0);
double[,] qp = new double[n.GetLength(0), 2];
double[] p0e = new double[2];
for (int i = 0; i < n.GetLength(0); i++)
{
p0e[0] = p0[i, 0];
p0e[1] = p0[i, 1];
Vector<double> V = CreateVector.DenseOfArray(p0e);
Matrix<double> M = CreateMatrix.DenseOfArray(ImnnT[i]);
Vector<double> MV = M * V;
qp[i, 0] = MV[0];
qp[i, 1] = MV[1];
}
double[] q = new double[2];
for (int i = 0; i < n.GetLength(0); i++)
{
q[0] = q[0] + qp[i, 0];
q[1] = q[1] + qp[i, 1];
}
double ConvertToRadians(double angle)
{
return (Math.PI / 180) * angle;
}
//double[] answer = new double[2];
double[][] RR = new double[2][];
for (int i = 0; i < 2; i++)
{
double[] row = new double[2];
for (int j = 0; j < 2; j++)
{
row[j] = R[i, j];
}
RR[i] = row;
}
double[] p = MultipleRegression.QR( // ********problem is in the statement
new[] { new[] { 1.0, 4.0 }, new[] { 2.0, 5.0 } },
new[] { 15.0, 20 },
intercept: true);
//var answer = MultipleRegression.QR(RR, q, intercept: true);
//var solution = LS_intersect(p0, a0);
// answer should be: [ 3.8085419 -1.94293867]
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
Solution | Source |
---|