'pandas combine two columns with null values

I have a df with two columns and I want to combine both columns ignoring the NaN values. The catch is that sometimes both columns have NaN values in which case I want the new column to also have NaN. Here's the example:

df = pd.DataFrame({'foodstuff':['apple-martini', 'apple-pie', None, None, None], 'type':[None, None, 'strawberry-tart', 'dessert', None]})

df
Out[10]:
foodstuff   type
0   apple-martini   None
1   apple-pie   None
2   None    strawberry-tart
3   None    dessert
4   None    None

I tried to use fillna and solve this :

df['foodstuff'].fillna('') + df['type'].fillna('')

and I got :

0      apple-martini
1          apple-pie
2    strawberry-tart
3            dessert
4                   
dtype: object

The row 4 has become a blank value. What I want in this situation is a NaN value since both the combining columns are NaNs.

0      apple-martini
1          apple-pie
2    strawberry-tart
3            dessert
4            None       
dtype: object


Solution 1:[1]

Use fillna on one column with the fill values being the other column:

df['foodstuff'].fillna(df['type'])

The resulting output:

0      apple-martini
1          apple-pie
2    strawberry-tart
3            dessert
4               None

Solution 2:[2]

you can use the combine method with a lambda:

df['foodstuff'].combine(df['type'], lambda a, b: ((a or "") + (b or "")) or None, None)

(a or "") returns "" if a is None then the same logic is applied on the concatenation (where the result would be None if the concatenation is an empty string).

Solution 3:[3]

  • fillna both columns together
  • sum(1) to add them
  • replace('', np.nan)

df.fillna('').sum(1).replace('', np.nan)

0      apple-martini
1          apple-pie
2    strawberry-tart
3            dessert
4                NaN
dtype: object

Solution 4:[4]

If you deal with columns that contain something where the others don't and vice-versa, a one-liner that does well the job is

>>> df.rename(columns={'type': 'foodstuff'}).stack().unstack()
         foodstuff
0    apple-martini
1        apple-pie
2  strawberry-tart
3          dessert

... which solution also generalises well if you have multiple columns to "intricate", as long as you can define your ~.rename mapping. The intention behind such renaming is to create duplicates that ~.stack().unstack() will then process for you.

As explained, this solution only suits configuration with orthogonal columns, i.e. columns that never are simultaneously valued.

Solution 5:[5]

You can always fill the empty string in the new column with None

import numpy as np

df['new_col'].replace(r'^\s*$', np.nan, regex=True, inplace=True)

Complete code:

import pandas as pd
import numpy as np

df = pd.DataFrame({'foodstuff':['apple-martini', 'apple-pie', None, None, None], 'type':[None, None, 'strawberry-tart', 'dessert', None]})

df['new_col'] = df['foodstuff'].fillna('') + df['type'].fillna('')

df['new_col'].replace(r'^\s*$', np.nan, regex=True, inplace=True)

df

output:

    foodstuff   type    new_col
0   apple-martini   None    apple-martini
1   apple-pie   None    apple-pie
2   None    strawberry-tart strawberry-tart
3   None    dessert dessert
4   None    None    NaN

Solution 6:[6]

  1. You can replace the non zero values with column names like

    df1= df.replace(1, pd.Series(df.columns, df.columns))

  2. Replace 0's with empty string and then merge the columns like below

    f = f.replace(0, '') f['new'] = f.First+f.Second+f.Three+f.Four

Refer the full code below.

import pandas as pd
df = pd.DataFrame({'Second':[0,1,0,0],'First':[1,0,0,0],'Three':[0,0,1,0],'Four':[0,0,0,1], 'cl': ['3D', 'Wireless','Accounting','cisco']})
df2=pd.DataFrame({'pi':['Accounting','cisco','3D','Wireless']})
df1= df.replace(1, pd.Series(df.columns, df.columns))
f = pd.merge(df1,df2,how='right',left_on=['cl'],right_on=['pi'])
f = f.replace(0, '')
f['new'] = f.First+f.Second+f.Three+f.Four

df1:

In [3]: df1                                                                                                                                                                              
Out[3]: 
   Second  First  Three  Four          cl
0       0  First      0     0          3D
1  Second      0      0     0    Wireless
2       0      0  Three     0  Accounting
3       0      0      0  Four       cisco

df2:

In [4]: df2                                                                                                                                                                              
Out[4]: 
           pi
0  Accounting
1       cisco
2          3D
3    Wireless

Final df will be:

In [2]: f                                                                                                                                                                                
Out[2]: 
   Second  First  Three  Four          cl          pi     new
0          First                       3D          3D   First
1  Second                        Wireless    Wireless  Second
2                 Three        Accounting  Accounting   Three
3                        Four       cisco       cisco    Four

Solution 7:[7]

We can make this problem even more complete and have a universal solution for this type of problem.

The key things in there are that we wish to join a group of columns together but just ignore NaNs.

Here is my answer:

df = pd.DataFrame({'foodstuff':['apple-martini', 'apple-pie', None, None, None], 
               'type':[None, None, 'strawberry-tart', 'dessert', None],
              'type1':[98324, None, None, 'banan', None],
              'type2':[3, None, 'strawberry-tart', np.nan, None]})

enter image description here

df=df.fillna("NAN")
df=df.astype('str')
df["output"] = df[['foodstuff', 'type', 'type1', 'type2']].agg(', '.join, axis=1)
df['output'] = df['output'].str.replace('NAN, ', '')
df['output'] = df['output'].str.replace(', NAN', '')

enter image description here

Sources

This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.

Source: Stack Overflow

Solution Source
Solution 1 root
Solution 2 sirfz
Solution 3 piRSquared
Solution 4
Solution 5 Vikash Singh
Solution 6 Mastan Basha Shaik
Solution 7 Sabito 錆兎 stands with Ukraine