'Pandas dataframe in pyspark to hive

How to send a pandas dataframe to a hive table?

I know if I have a spark dataframe, I can register it to a temporary table using

df.registerTempTable("table_name")
sqlContext.sql("create table table_name2 as select * from table_name")

but when I try to use the pandas dataFrame to registerTempTable, I get the below error:

AttributeError: 'DataFrame' object has no attribute 'registerTempTable'

Is there a way for me to use a pandas dataFrame to register a temp table or convert it to a spark dataFrame and then use it register a temp table so that I can send it back to hive.



Solution 1:[1]

I guess you are trying to use pandas df instead of Spark's DF.

Pandas DataFrame has no such method as registerTempTable.

you may try to create Spark DF from pandas DF.

UPDATE:

I've tested it under Cloudera (with installed Anaconda parcel, which includes Pandas module).

Make sure that you have set PYSPARK_PYTHON to your anaconda python installation (or another one containing Pandas module) on all your Spark workers (usually in: spark-conf/spark-env.sh)

Here is result of my test:

>>> import pandas as pd
>>> import numpy as np
>>> df = pd.DataFrame(np.random.randint(0,100,size=(10, 3)), columns=list('ABC'))
>>> sdf = sqlContext.createDataFrame(df)
>>> sdf.show()
+---+---+---+
|  A|  B|  C|
+---+---+---+
| 98| 33| 75|
| 91| 57| 80|
| 20| 87| 85|
| 20| 61| 37|
| 96| 64| 60|
| 79| 45| 82|
| 82| 16| 22|
| 77| 34| 65|
| 74| 18| 17|
| 71| 57| 60|
+---+---+---+

>>> sdf.printSchema()
root
 |-- A: long (nullable = true)
 |-- B: long (nullable = true)
 |-- C: long (nullable = true)

Solution 2:[2]

first u need to convert pandas dataframe to spark dataframe:

from pyspark.sql import HiveContext
hive_context = HiveContext(sc)
df = hive_context.createDataFrame(pd_df)

then u can create a temptable which is in memory:

df.registerTempTable('tmp')

now,u can use hive ql to save data into hive:

hive_context.sql("""insert overwrite table target partition(p='p') select a,b from tmp'''

note than:the hive_context must be keep to the same one!

Solution 3:[3]

I converted my pandas df to a temp table by

1) Converting the pandas dataframe to spark dataframe:

spark_df=sqlContext.createDataFrame(Pandas_df)

2) Make sure that the data is migrated properly

spark_df.select("*").show()

3) Convert the spark dataframe to a temp table for querying.

spark_df.registerTempTable("table_name").

Cheers..

Solution 4:[4]

By Following all the other answers here, I was able to convert a pandas dataframe to a permanent Hive table as follows:

# sc is a spark context created with enableHiveSupport()
from pyspark.sql import HiveContext
hc=HiveContext(sc)

# df is my pandas dataframe
sc.createDataFrame(df).registerTempTable('tmp')   

# sch is the hive schema, and tabname is my new hive table name
hc.sql("create table sch.tabname as select * from tmp") 

Sources

This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.

Source: Stack Overflow

Solution Source
Solution 1
Solution 2 B.Mr.W.
Solution 3 Abhi
Solution 4 Jim Bander