'Pandas TimeSeries resample produces NaNs
I am resampling a Pandas TimeSeries. The timeseries consist of binary values (it is a categorical variable) with no missing values, but after resampling NaNs appear. How is this possible?
I can't post any example data here since it is sensitive info, but I create and resample the series as follows:
series = pd.Series(data, ts)
series_rs = series.resample('60T', how='mean')
Solution 1:[1]
upsampling
converts to a regular time interval, so if there are no samples you get NaN
.
You can fill missing values backward by fill_method='bfill'
or for forward - fill_method='ffill'
or fill_method='pad'
.
import pandas as pd
ts = pd.date_range('1/1/2015', periods=10, freq='100T')
data = range(10)
series = pd.Series(data, ts)
print series
#2015-01-01 00:00:00 0
#2015-01-01 01:40:00 1
#2015-01-01 03:20:00 2
#2015-01-01 05:00:00 3
#2015-01-01 06:40:00 4
#2015-01-01 08:20:00 5
#2015-01-01 10:00:00 6
#2015-01-01 11:40:00 7
#2015-01-01 13:20:00 8
#2015-01-01 15:00:00 9
#Freq: 100T, dtype: int64
series_rs = series.resample('60T', how='mean')
print series_rs
#2015-01-01 00:00:00 0
#2015-01-01 01:00:00 1
#2015-01-01 02:00:00 NaN
#2015-01-01 03:00:00 2
#2015-01-01 04:00:00 NaN
#2015-01-01 05:00:00 3
#2015-01-01 06:00:00 4
#2015-01-01 07:00:00 NaN
#2015-01-01 08:00:00 5
#2015-01-01 09:00:00 NaN
#2015-01-01 10:00:00 6
#2015-01-01 11:00:00 7
#2015-01-01 12:00:00 NaN
#2015-01-01 13:00:00 8
#2015-01-01 14:00:00 NaN
#2015-01-01 15:00:00 9
#Freq: 60T, dtype: float64
series_rs = series.resample('60T', how='mean', fill_method='bfill')
print series_rs
#2015-01-01 00:00:00 0
#2015-01-01 01:00:00 1
#2015-01-01 02:00:00 2
#2015-01-01 03:00:00 2
#2015-01-01 04:00:00 3
#2015-01-01 05:00:00 3
#2015-01-01 06:00:00 4
#2015-01-01 07:00:00 5
#2015-01-01 08:00:00 5
#2015-01-01 09:00:00 6
#2015-01-01 10:00:00 6
#2015-01-01 11:00:00 7
#2015-01-01 12:00:00 8
#2015-01-01 13:00:00 8
#2015-01-01 14:00:00 9
#2015-01-01 15:00:00 9
#Freq: 60T, dtype: float64
Solution 2:[2]
Please note that fill_method has now been deprecated. resample()
now returns a resampling object on which you can perform operations just like a groupby object.
common downsampling operations:
.mean()
.sum()
.agg()
.apply()
upsampling operations:
.ffill()
.bfill()
See the whats-new message in the documentation https://pandas.pydata.org/pandas-docs/stable/whatsnew.html#whatsnew-0180-breaking-resample
so the example would become
series_rs = series.resample('60T').mean()
Solution 3:[3]
When upsampling a time series, after calling .resample()
you still need to call .interpolate()
on the desired column in order to fill in those NaN
s.
df = df.resample('15min').mean()
df['my_column'] = df['my_column'].interpolate()
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
Solution | Source |
---|---|
Solution 1 | |
Solution 2 | |
Solution 3 |