'Python group by

Assume that I have a set of data pair where index 0 is the value and index 1 is the type:

input = [
          ('11013331', 'KAT'), 
          ('9085267',  'NOT'), 
          ('5238761',  'ETH'), 
          ('5349618',  'ETH'), 
          ('11788544', 'NOT'), 
          ('962142',   'ETH'), 
          ('7795297',  'ETH'), 
          ('7341464',  'ETH'), 
          ('9843236',  'KAT'), 
          ('5594916',  'ETH'), 
          ('1550003',  'ETH')
        ]

I want to group them by their type (by the 1st indexed string) as such:

result = [ 
           { 
             type:'KAT', 
             items: ['11013331', '9843236'] 
           },
           {
             type:'NOT', 
             items: ['9085267', '11788544'] 
           },
           {
             type:'ETH', 
             items: ['5238761', '962142', '7795297', '7341464', '5594916', '1550003'] 
           }
         ] 

How can I achieve this in an efficient way?



Solution 1:[1]

Do it in 2 steps. First, create a dictionary.

>>> input = [('11013331', 'KAT'), ('9085267', 'NOT'), ('5238761', 'ETH'), ('5349618', 'ETH'), ('11788544', 'NOT'), ('962142', 'ETH'), ('7795297', 'ETH'), ('7341464', 'ETH'), ('9843236', 'KAT'), ('5594916', 'ETH'), ('1550003', 'ETH')]
>>> from collections import defaultdict
>>> res = defaultdict(list)
>>> for v, k in input: res[k].append(v)
...

Then, convert that dictionary into the expected format.

>>> [{'type':k, 'items':v} for k,v in res.items()]
[{'items': ['9085267', '11788544'], 'type': 'NOT'}, {'items': ['5238761', '5349618', '962142', '7795297', '7341464', '5594916', '1550003'], 'type': 'ETH'}, {'items': ['11013331', '9843236'], 'type': 'KAT'}]

It is also possible with itertools.groupby but it requires the input to be sorted first.

>>> sorted_input = sorted(input, key=itemgetter(1))
>>> groups = groupby(sorted_input, key=itemgetter(1))
>>> [{'type':k, 'items':[x[0] for x in v]} for k, v in groups]
[{'items': ['5238761', '5349618', '962142', '7795297', '7341464', '5594916', '1550003'], 'type': 'ETH'}, {'items': ['11013331', '9843236'], 'type': 'KAT'}, {'items': ['9085267', '11788544'], 'type': 'NOT'}]

Note both of these do not respect the original order of the keys. You need an OrderedDict if you need to keep the order.

>>> from collections import OrderedDict
>>> res = OrderedDict()
>>> for v, k in input:
...   if k in res: res[k].append(v)
...   else: res[k] = [v]
... 
>>> [{'type':k, 'items':v} for k,v in res.items()]
[{'items': ['11013331', '9843236'], 'type': 'KAT'}, {'items': ['9085267', '11788544'], 'type': 'NOT'}, {'items': ['5238761', '5349618', '962142', '7795297', '7341464', '5594916', '1550003'], 'type': 'ETH'}]

Solution 2:[2]

Python's built-in itertools module actually has a groupby function , but for that the elements to be grouped must first be sorted such that the elements to be grouped are contiguous in the list:

from operator import itemgetter
sortkeyfn = itemgetter(1)
input = [('11013331', 'KAT'), ('9085267', 'NOT'), ('5238761', 'ETH'), 
 ('5349618', 'ETH'), ('11788544', 'NOT'), ('962142', 'ETH'), ('7795297', 'ETH'), 
 ('7341464', 'ETH'), ('9843236', 'KAT'), ('5594916', 'ETH'), ('1550003', 'ETH')] 
input.sort(key=sortkeyfn)

Now input looks like:

[('5238761', 'ETH'), ('5349618', 'ETH'), ('962142', 'ETH'), ('7795297', 'ETH'),
 ('7341464', 'ETH'), ('5594916', 'ETH'), ('1550003', 'ETH'), ('11013331', 'KAT'),
 ('9843236', 'KAT'), ('9085267', 'NOT'), ('11788544', 'NOT')]

groupby returns a sequence of 2-tuples, of the form (key, values_iterator). What we want is to turn this into a list of dicts where the 'type' is the key, and 'items' is a list of the 0'th elements of the tuples returned by the values_iterator. Like this:

from itertools import groupby
result = []
for key,valuesiter in groupby(input, key=sortkeyfn):
    result.append(dict(type=key, items=list(v[0] for v in valuesiter)))

Now result contains your desired dict, as stated in your question.

You might consider, though, just making a single dict out of this, keyed by type, and each value containing the list of values. In your current form, to find the values for a particular type, you'll have to iterate over the list to find the dict containing the matching 'type' key, and then get the 'items' element from it. If you use a single dict instead of a list of 1-item dicts, you can find the items for a particular type with a single keyed lookup into the master dict. Using groupby, this would look like:

result = {}
for key,valuesiter in groupby(input, key=sortkeyfn):
    result[key] = list(v[0] for v in valuesiter)

result now contains this dict (this is similar to the intermediate res defaultdict in @KennyTM's answer):

{'NOT': ['9085267', '11788544'], 
 'ETH': ['5238761', '5349618', '962142', '7795297', '7341464', '5594916', '1550003'], 
 'KAT': ['11013331', '9843236']}

(If you want to reduce this to a one-liner, you can:

result = dict((key,list(v[0] for v in valuesiter)
              for key,valuesiter in groupby(input, key=sortkeyfn))

or using the newfangled dict-comprehension form:

result = {key:list(v[0] for v in valuesiter)
              for key,valuesiter in groupby(input, key=sortkeyfn)}

Solution 3:[3]

This answer is similar to @PaulMcG's answer but doesn't require sorting the input.

For those into functional programming, groupBy can be written in one line (not including imports!), and unlike itertools.groupby it doesn't require the input to be sorted:

from functools import reduce # import needed for python3; builtin in python2
from collections import defaultdict

def groupBy(key, seq):
 return reduce(lambda grp, val: grp[key(val)].append(val) or grp, seq, defaultdict(list))

(The reason for ... or grp in the lambda is that for this reduce() to work, the lambda needs to return its first argument; because list.append() always returns None the or will always return grp. I.e. it's a hack to get around python's restriction that a lambda can only evaluate a single expression.)

This returns a dict whose keys are found by evaluating the given function and whose values are a list of the original items in the original order. For the OP's example, calling this as groupBy(lambda pair: pair[1], input) will return this dict:

{'KAT': [('11013331', 'KAT'), ('9843236', 'KAT')],
 'NOT': [('9085267', 'NOT'), ('11788544', 'NOT')],
 'ETH': [('5238761', 'ETH'), ('5349618', 'ETH'), ('962142', 'ETH'), ('7795297', 'ETH'), ('7341464', 'ETH'), ('5594916', 'ETH'), ('1550003', 'ETH')]}

And as per @PaulMcG's answer the OP's requested format can be found by wrapping that in a list comprehension. So this will do it:

result = {key: [pair[0] for pair in values],
          for key, values in groupBy(lambda pair: pair[1], input).items()}

Solution 4:[4]

I also liked pandas simple grouping. it's powerful, simple and most adequate for large data set

result = pandas.DataFrame(input).groupby(1).groups

Solution 5:[5]

The following function will quickly (no sorting required) group tuples of any length by a key having any index:

# given a sequence of tuples like [(3,'c',6),(7,'a',2),(88,'c',4),(45,'a',0)],
# returns a dict grouping tuples by idx-th element - with idx=1 we have:
# if merge is True {'c':(3,6,88,4),     'a':(7,2,45,0)}
# if merge is False {'c':((3,6),(88,4)), 'a':((7,2),(45,0))}
def group_by(seqs,idx=0,merge=True):
    d = dict()
    for seq in seqs:
        k = seq[idx]
        v = d.get(k,tuple()) + (seq[:idx]+seq[idx+1:] if merge else (seq[:idx]+seq[idx+1:],))
        d.update({k:v})
    return d

In the case of your question, the index of key you want to group by is 1, therefore:

group_by(input,1)

gives

{'ETH': ('5238761','5349618','962142','7795297','7341464','5594916','1550003'),
 'KAT': ('11013331', '9843236'),
 'NOT': ('9085267', '11788544')}

which is not exactly the output you asked for, but might as well suit your needs.

Solution 6:[6]

result = []
# Make a set of your "types":
input_set = set([tpl[1] for tpl in input])
>>> set(['ETH', 'KAT', 'NOT'])
# Iterate over the input_set
for type_ in input_set:
    # a dict to gather things:
    D = {}
    # filter all tuples from your input with the same type as type_
    tuples = filter(lambda tpl: tpl[1] == type_, input)
    # write them in the D:
    D["type"] = type_
    D["itmes"] = [tpl[0] for tpl in tuples]
    # append D to results:
    result.append(D)

result
>>> [{'itmes': ['9085267', '11788544'], 'type': 'NOT'}, {'itmes': ['5238761', '5349618', '962142', '7795297', '7341464', '5594916', '1550003'], 'type': 'ETH'}, {'itmes': ['11013331', '9843236'], 'type': 'KAT'}]

Solution 7:[7]

You could use convtools library which generates ad-hoc code for your exact task and allows for dynamic code generation.

from convtools import conversion as c

# grouping by second elements of tuples;
# aggregate defines the schema of the expected output elements
converter = c.group_by(c.item(1)).aggregate({
    "type": c.item(1),
    "items": c.ReduceFuncs.Array(c.item(0)),
}).gen_converter()

# now you have a function which does what you asked,
# store it somewhere for further reuse
converter(input_data)

Solution 8:[8]

Following Snippet is also a way to get the desired results -

res = []
dict1 = {}
for item in input:
  if item[1] not in dict1:
    dict1[item[1]] = [item[0]]
  elif item[1] in dict1:
    dict1[item[1]].append(item[0])
for k, v in dict1.items():
  res.append({"type": k, "items": v})


# res = [ { type:'KAT', items: ['11013331', '9843236'] },{ type:'NOT',  items: ['9085267', '11788544'] },{ type:'ETH',  items: ['5238761', '962142', '7795297', '7341464', '5594916', '1550003'] }] 

Sources

This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.

Source: Stack Overflow

Solution Source
Solution 1
Solution 2
Solution 3
Solution 4 akiva
Solution 5 Phrogz
Solution 6
Solution 7
Solution 8 Kshitij Zutshi