'Python Plotly How to remove datetime gaps in candle stick chart?
I am trying to remove the datetime gaps in my candlestick (the gaps are the time periods when the stock market is closed, hence there are not data). Can't seem to find a good solution for using plotly graph object. Is there a feasible way to do so?
My code is as follows (using plotly graph object):
import dash
import dash_core_components as dcc
import dash_table
import pandas as pd
import dash_html_components as html
import numpy as np
from dash.dependencies import Output, Input, State
import plotly.graph_objects as go
import yfinance as yf
import plotly.express as px
from datetime import datetime, timedelta
from pytz import timezone
import dash_bootstrap_components as dbc
df= yf.Ticker('aapl')
df = df.history(interval="5m",period="5d")
df["Datetime"] = df.index
trace1 = {
'x': df.Datetime,
'open': df.Open,
'close': df.Close,
'high': df.High,
'low': df.Low,
'type': 'candlestick',
'name': 'apple,
'showlegend': False
}
data = [trace1]
# Config graph layout
layout = go.Layout({
'title': {
'text': str(input_value) + ' Stock',
'font': {
'size': 15
}
},
'plot_bgcolor': '#2E2E2E'
})
fig = go.Figure(data=data, layout=layout)
fig.update_layout(xaxis_rangeslider_visible=False)
if __name__ == '__main__':
app.run_server(debug=True)
Solution 1:[1]
You can achieve this by rangebreaks in plotly.
Below is the code to hide outside trading hours and weekends.
fig = go.Figure(data=[go.Candlestick(x=df['date'], open=df['Open'], high=df['High'], low=df['Low'], close=df['Close'])])
fig.update_xaxes(
rangeslider_visible=True,
rangebreaks=[
# NOTE: Below values are bound (not single values), ie. hide x to y
dict(bounds=["sat", "mon"]), # hide weekends, eg. hide sat to before mon
dict(bounds=[16, 9.5], pattern="hour"), # hide hours outside of 9.30am-4pm
# dict(values=["2019-12-25", "2020-12-24"]) # hide holidays (Christmas and New Year's, etc)
]
)
fig.update_layout(
title='Stock Analysis',
yaxis_title=f'{symbol} Stock'
)
fig.show()
here's Plotly's doc.
Solution 2:[2]
We can set rangebreaks
option:
- fill
nan
where we have gaps (i.e. reindexing the dataframe); - create
datebreaks
for allnan
values; - set rangebreak values on
xaxes
config
begin_date, end_date = [df.iloc[0].name, df.iloc[-1].name]
df = df.reindex(pd.date_range(begin_date, end_date, freq='D'))
datebreaks = df['Close'][df_plot['Close'].isnull()].index
fig.update_xaxes(rangebreaks=[dict(values=datebreaks)])
Solution 3:[3]
TLDR:
I was stuck with same problem and couldn't found any solution from the plotly documentation. Only suggestion I found on plotly R community is to make the x axis as category instead of datetime. Still I couldn't make it work as the fig.layout()
has no such property available.
For your code change the Datetime to string to force it to none datetime type axis
df["Datetime"] = df.index.dt.strftime("%Y/%m/%d %H:%M")
This should resolve issue the datetime gaps.
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
Solution | Source |
---|---|
Solution 1 | Mega J |
Solution 2 | Pedro Lira |
Solution 3 | Sourav De |