'Python Postgres Package: psycopg2 copy_from vs copy_expert
Requirement: To load millions of rows into a table from S3 using Python and avoid memory issue
I see there are two methods psycopg2's copy_from and copy_expert.
Which of these are most efficient and avoid memory issue
Also, I see that Redshift(Which is Postgres) support COPY Command to load data from S3 file but not sure if Postgres DB support such feature
Solution 1:[1]
My implementation changing copy_from
to copy_expert
. Extensive analysis of PostgreSQL load can be found here: https://hakibenita.com/fast-load-data-python-postgresql.
COPY_FROM
def insert_with_string_io(df: pd.DataFrame, table_name: str):
buffer = io.StringIO()
df.to_csv(buffer, index=False, header=False)
buffer.seek(0)
with conn.cursor() as cursor:
try:
cursor.copy_from(file=buffer, table=table_name, sep=",", null="")
except (Exception, psycopg2.DatabaseError) as error:
print("Error: %s" % error)
COPY_EXPERT
def insert_with_string_io(df: pd.DataFrame):
buffer = io.StringIO()
df.to_csv(buffer, index=False, header=False)
buffer.seek(0)
with conn.cursor() as cursor:
try:
cursor.copy_expert(f"COPY <database>.<schema>.<table> FROM STDIN (FORMAT 'csv', HEADER false)" , buffer)
except (Exception, psycopg2.DatabaseError) as error:
print("Error: %s" % error)
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
Solution | Source |
---|---|
Solution 1 | Hale4029 |