'Q: Errors when usinig gluonts of LSTNet: GluonTSDataError
I've been studying time series forecasting, and I'm trying to learn how to use gluon-ts&python. Here is the source code of gluon-ts:
I tried to use LSTNetEstimator module, however, it turns out an error as follow. And I found that all the discussions of gluon-ts is about DeepAR. Is there anyone that may come to help?
GluonTSDataError: Input for field "target" does not have the requireddimension (field: target, ndim observed: 1, expected ndim: 2)
I think it has something to do with my custom dataset, which includes a dataframe with the shape of [320000,3]
and columns of ['time','Power_Cdp','Power_Dp']
.
here is the trainset:
from gluonts.dataset.common import ListDataset
from gluonts.model.lstnet import LSTNetEstimator
from gluonts.mx.trainer import Trainer
training_data = ListDataset(
[{"start": LSTNet_df.index[0], "target": LSTNet_df['Power_Cdp'][:-10000}],
freq = "15min")
estimator = LSTNetEstimator(freq="15min", prediction_length=24*4, context_length=24*4,
num_series=48*4, skip_size=72*4, ar_window=24*4, channels=32,
trainer=Trainer(epochs=10))
predictor = estimator.train(training_data=training_data) # Error
The full report is bellow.
GluonTSDataError Traceback (most recent call last)
<ipython-input-311-ad48fdc20df5> in <module>
7 num_series=48*4, skip_size=72*4, ar_window=24*4, channels=32,
8 trainer=Trainer(epochs=10))
----> 9 predictor = estimator.train(training_data=training_data)
~/.local/lib/python3.8/site-packages/gluonts/mx/model/estimator.py in train(self, training_data, validation_data, num_workers, num_prefetch, shuffle_buffer_length, cache_data, **kwargs)
192 **kwargs,
193 ) -> Predictor:
--> 194 return self.train_model(
195 training_data=training_data,
196 validation_data=validation_data,
~/.local/lib/python3.8/site-packages/gluonts/mx/model/estimator.py in train_model(self, training_data, validation_data, num_workers, num_prefetch, shuffle_buffer_length, cache_data)
145 transformed_training_data = transformation.apply(training_data)
146
--> 147 training_data_loader = self.create_training_data_loader(
148 transformed_training_data
149 if not cache_data
~/.local/lib/python3.8/site-packages/gluonts/model/lstnet/_estimator.py in create_training_data_loader(self, data, **kwargs)
216 ) -> DataLoader:
217 input_names = get_hybrid_forward_input_names(LSTNetTrain)
--> 218 with env._let(max_idle_transforms=maybe_len(data) or 0):
219 instance_splitter = self._create_instance_splitter("training")
220 return TrainDataLoader(
~/.local/lib/python3.8/site-packages/gluonts/itertools.py in maybe_len(obj)
21 def maybe_len(obj) -> Optional[int]:
22 try:
---> 23 return len(obj)
24 except (NotImplementedError, AttributeError):
25 return None
~/.local/lib/python3.8/site-packages/gluonts/transform/_base.py in __len__(self)
99 # NOTE this is unsafe when transformations are run with is_train = True
100 # since some transformations may not be deterministic (instance splitter)
--> 101 return sum(1 for _ in self)
102
103 def __iter__(self) -> Iterator[DataEntry]:
~/.local/lib/python3.8/site-packages/gluonts/transform/_base.py in <genexpr>(.0)
99 # NOTE this is unsafe when transformations are run with is_train = True
100 # since some transformations may not be deterministic (instance splitter)
--> 101 return sum(1 for _ in self)
102
103 def __iter__(self) -> Iterator[DataEntry]:
~/.local/lib/python3.8/site-packages/gluonts/transform/_base.py in __iter__(self)
102
103 def __iter__(self) -> Iterator[DataEntry]:
--> 104 yield from self.transformation(
105 self.base_dataset, is_train=self.is_train
106 )
~/.local/lib/python3.8/site-packages/gluonts/transform/_base.py in __call__(self, data_it, is_train)
122 self, data_it: Iterable[DataEntry], is_train: bool
123 ) -> Iterator:
--> 124 for data_entry in data_it:
125 try:
126 yield self.map_transform(data_entry.copy(), is_train)
~/.local/lib/python3.8/site-packages/gluonts/transform/_base.py in __call__(self, data_it, is_train)
126 yield self.map_transform(data_entry.copy(), is_train)
127 except Exception as e:
--> 128 raise e
129
130 @abc.abstractmethod
~/.local/lib/python3.8/site-packages/gluonts/transform/_base.py in __call__(self, data_it, is_train)
124 for data_entry in data_it:
125 try:
--> 126 yield self.map_transform(data_entry.copy(), is_train)
127 except Exception as e:
128 raise e
~/.local/lib/python3.8/site-packages/gluonts/transform/_base.py in map_transform(self, data, is_train)
139
140 def map_transform(self, data: DataEntry, is_train: bool) -> DataEntry:
--> 141 return self.transform(data)
142
143 @abc.abstractmethod
~/.local/lib/python3.8/site-packages/gluonts/transform/convert.py in transform(self, data)
127 value = np.asarray(data[self.field], dtype=self.dtype)
128
--> 129 assert_data_error(
130 value.ndim == self.expected_ndim,
131 'Input for field "{self.field}" does not have the required'
~/.local/lib/python3.8/site-packages/gluonts/exceptions.py in assert_data_error(condition, message, *args, **kwargs)
114 exception message.
115 """
--> 116 assert_gluonts(GluonTSDataError, condition, message, *args, **kwargs)
~/.local/lib/python3.8/site-packages/gluonts/exceptions.py in assert_gluonts(exception_class, condition, message, *args, **kwargs)
93 """
94 if not condition:
---> 95 raise exception_class(message.format(*args, **kwargs))
96
97
GluonTSDataError: Input for field "target" does not have the requireddimension (field: target, ndim observed: 1, expected ndim: 2)
Solution 1:[1]
@darth baba I tried again lately, and this time I used DeepVAR.
Here is what got.
I reset "target": ...
, stepped into my code and found
gluonts.exceptions.GluonTSDataError: Array 'target' has bad shape - expected 1 dimensions, got 2.
This is because I set "target": train_df[['Power_Cdp', 'Power_Active_Fan']]
, which might be reported as an error at ./gluonts/dataset/common.py +385
.
I found self.req_ndim != value.ndim
, which suggested that I could have input a wrong shape of target
, thus I reset input like "target": train_df.index[:]
and this problem solved.
But it reports an another error,
gluonts.exceptions.GluonTSDataError: Input for field "target" does not have the requireddimension (field: target, ndim observed: 1, expected ndim: 2)
To be sincerely, this one confused me a lot, for the gluonts's code seems so complicated.
I checked again and found it reports error at ./gluonts/transform/convert.py +129
.
It seems like expected_ndim
is not equals to value.ndim
in this case.
However, after rewriting expected_ndim
manually, the training progress worked eventually.
I have no idea whether this modification is right.
Although the avg_epoch_loss
are decreasing, the final forecast is not as good as expected.
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
Solution | Source |
---|---|
Solution 1 |