'Repeat rows in a pandas DataFrame based on column value
I have the following df:
code . role . persons
123 . Janitor . 3
123 . Analyst . 2
321 . Vallet . 2
321 . Auditor . 5
The first line means that I have 3 persons with the role Janitors. My problem is that I would need to have one line for each person. My df should look like this:
df:
code . role . persons
123 . Janitor . 3
123 . Janitor . 3
123 . Janitor . 3
123 . Analyst . 2
123 . Analyst . 2
321 . Vallet . 2
321 . Vallet . 2
321 . Auditor . 5
321 . Auditor . 5
321 . Auditor . 5
321 . Auditor . 5
321 . Auditor . 5
How could I do that using pandas?
Solution 1:[1]
reindex
+ repeat
df.reindex(df.index.repeat(df.persons))
Out[951]:
code . role ..1 persons
0 123 . Janitor . 3
0 123 . Janitor . 3
0 123 . Janitor . 3
1 123 . Analyst . 2
1 123 . Analyst . 2
2 321 . Vallet . 2
2 321 . Vallet . 2
3 321 . Auditor . 5
3 321 . Auditor . 5
3 321 . Auditor . 5
3 321 . Auditor . 5
3 321 . Auditor . 5
PS: you can add.reset_index(drop=True)
to get the new index
Solution 2:[2]
Wen's solution is really nice and intuitive. Here's an alternative, calling repeat
on df.values
.
df
code role persons
0 123 Janitor 3
1 123 Analyst 2
2 321 Vallet 2
3 321 Auditor 5
pd.DataFrame(df.values.repeat(df.persons, axis=0), columns=df.columns)
code role persons
0 123 Janitor 3
1 123 Janitor 3
2 123 Janitor 3
3 123 Analyst 2
4 123 Analyst 2
5 321 Vallet 2
6 321 Vallet 2
7 321 Auditor 5
8 321 Auditor 5
9 321 Auditor 5
10 321 Auditor 5
11 321 Auditor 5
Solution 3:[3]
Not enough reputation to comment, but building on @cs95's answer and @lmiguelvargasf's comment, one can preserve dtypes with:
pd.DataFrame(
df.values.repeat(df.persons, axis=0),
columns=df.columns,
).astype(df.dtypes)
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
Solution | Source |
---|---|
Solution 1 | |
Solution 2 | cs95 |
Solution 3 |