'Roc_curve over number of nearest-neighbors

I'm struggling to re-implement and catch the results of one of the unsupervised anomaly detections, which are shown below: img The credit of picture to this paper Histogram-based Outlier Score (HBOS): A fast Unsupervised Anomaly Detection Algorithm by M. Goldstein & A. Dengel.

The Author of this paper, use 3 datasets which can be founded in this source easily including some info in Metadata tab.

#!pip install pyod
#from functions import auc_plot
import numpy as np
list_of_models = ['HBOS_pyod','KNN_pyod', 'KNN_sklearn','LOF_pyod', 'LOF_sklearn']
k = [5, 10, 20, 30, 40, 50, 60, 70,80, 90, 100]
#k = [3,5,6,7, 10, 20, 30, 40, 50, 60, 70]
#k = [3,5,6,7, 10,15, 25, 35, 45, 55, 65, 78, 87, 95, 99]
#k = np.arange(5, 100, step=10)
name_target = 'target'
contamination = 0.4
number_of_unique = None

auc_plot(df,name_target,contamination,number_of_unique,list_of_models,k)

I downloaded the breast cancer dataset from sklearn and applied those outlier detection algorithms from different packages like sklearn and pyod (e.g. HBOS), but I still couldn't reach this output which is shown in the above picture.

I'm suing this function for plotting so named functions.py

def auc_plot(df,name_target,contamination,number_of_unique,list_of_models,k):
    
    from pyod.models.hbos import HBOS
    from pyod.models.knn import KNN 
    from pyod.models.iforest import IForest
    from pyod.models.lof import LOF
    from sklearn.neighbors import KNeighborsClassifier
    from xgboost import XGBClassifier
    from sklearn.neighbors import LocalOutlierFactor
    from sklearn.svm import OneClassSVM
    

    from sklearn import metrics

    orig = df.copy()
    #bins = list(range(0,k+1))

    predictions_list = []

    if contamination > 0.5:
      contamination = 0.5

    X, y = df.loc[:, df.columns!= name_target], df[name_target]
    seed = 120
    test_size = 0.3
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=seed,stratify=y)
    #print('X_test:',X_test.shape,'y_test:',y_test.shape)

#*************************************
    if 'HBOS_pyod' in list_of_models:
      
      predictions_1_j = []
      auc_1_j = []

      for j in range(len(k)):

        model_name_1 = 'HBOS_pyod'
        # train HBOS detector
        clf_name = 'HBOS_pyod'
        clf = HBOS(n_bins=k[j],contamination= contamination)
        #start = time.time()
        clf.fit(X_train)

        # get the prediction on the test data
        y_test_pred = clf.predict(X_test)  # outlier labels (0 or 1)
        y_test_scores_hbos = clf.decision_function(X_test)  # outlier scores

        predictions = [round(value) for value in y_test_pred]
        for i in range(0,len(predictions)):
          if predictions[i] > 0.5:
            predictions[i]=1
          else:
            predictions[i]=0

        predictions_1_j.append(predictions) 

        # #AUC score
        auc_1 = metrics.roc_auc_score(y_test, predictions)             
        auc_1_j.append(auc_1)
        #print('auc_1_j', auc_1_j)

#***********************************************
    if 'KNN_pyod' in list_of_models:

      from pyod.models.knn import KNN 

      predictions_2_j = []
      auc_2_j = []

      for j in range(len(k)):

        model_name_2 = 'KNN_pyod'
        # train kNN detector
        clf_name = 'KNN_pyod'
        clf = KNN(contamination= contamination,n_neighbors=k[j])

        clf.fit(X_train)

        # get the prediction on the test data
        y_test_pred = clf.predict(X_test)  # outlier labels (0 or 1)
        y_test_scores_knn = clf.decision_function(X_test)  # outlier scores

        predictions = [round(value) for value in y_test_pred]
        for i in range(0,len(predictions)):
          if predictions[i] > 0.5:
            predictions[i]=1
          else:
            predictions[i]=0

        predictions_2_j.append(predictions)
        
        # #AUC score
        auc_2 = metrics.roc_auc_score(y_test, predictions)     
        auc_2_j.append(auc_2)
        #print('auc_2_j', auc_2_j)

#****************************************************************LOF
    if 'LOF_pyod' in list_of_models:

      #print('******************************************************************LOF_pyod')
      from pyod.models.lof import LOF
      import time

      predictions_4_j = []
      auc_4_j = []

      for j in range(len(k)):

        model_name_4 = 'LOF_pyod'

        # train LOF detector
        clf_name = 'LOF_pyod'
        clf = LOF(n_neighbors=k[j],contamination= contamination)
        #start = time.time()
        clf.fit(X_train)

        # get the prediction on the test data
        y_test_pred = clf.predict(X_test)  # outlier labels (0 or 1)
        y_test_scores_lof = clf.decision_function(X_test)  # outlier scores
        #****************************************
        predictions = [round(value) for value in y_test_pred]

        for i in range(0,len(predictions)):
          if predictions[i] > 0.5:
            predictions[i]=1
          else:
            predictions[i]=0

        predictions_4_j.append(predictions)

        # #AUC score
        auc_4 = metrics.roc_auc_score(y_test, predictions)     
        auc_4_j.append(auc_4)
        #print('auc_4_j', auc_4_j)

#****************************************************************XBOS
    if 'XBOS' in list_of_models:

      #print('******************************************************************XBOS')
      import time
      #df_2_exist = False

      if number_of_unique != None:
        df_2 = df.copy()

        #remove columns with constant numbers or those columns with unique numbers of < number_of_unique
        cols = df_2.columns
        for i in range(len(cols)):
          if cols[i] != name_target:
            m = df_2[cols[i]].value_counts()
            m = np.array(m)
            if len(m) < number_of_unique:
              print(f'len cols {i}:',len(m), 'droped')
              #print('drope')
              column_name = cols[i]
              df_2=df_2.drop(columns= column_name)

        X_2, y_2= df_2.loc[:, df_2.columns!= name_target], df_2[name_target]
        X_train_2, X_test_2, y_train_2, y_test_2 = train_test_split(X_2, y_2, test_size=0.3, random_state=120,stratify=y_2)

        predictions_5_j = []
        auc_5_j = []

        for j in range(len(k)):
          model_name_5 = 'XBOS'
          #create XBOS model
          clf = xbosmodel.XBOS(n_clusters=k[j],max_iter=1)
          #start = time.time()
          # train XBOS model
          clf.fit(X_train_2)
          
          #predict model
          y_test_pred = clf.predict(X_test_2)
          y_test_scores_xbos = clf.fit_predict(X_test_2)
          predictions = [round(value) for value in y_test_pred]
          for i in range(0,len(predictions)):
            if predictions[i] > 0.5:
              predictions[i]=1
            else:
              predictions[i]=0

          predictions_5_j.append(predictions)

          # #AUC score
          auc_5 = metrics.roc_auc_score(y_test, predictions)     
          auc_5_j.append(auc_5)

      else:
        predictions_5_j = []
        auc_5_j = []

        for j in range(len(k)):

          model_name_5 = 'XBOS'
          #create XBOS model
          clf = xbosmodel.XBOS(n_clusters=k[j],max_iter=1)
          start = time.time()
          # train XBOS model
          clf.fit(X_train)

          #predict model
          y_test_pred = clf.predict(X_test)
          y_test_scores_xbos = clf.fit_predict(X_test)
          predictions = [round(value) for value in y_test_pred]
          for i in range(0,len(predictions)):
            if predictions[i] > 0.5:
              predictions[i]=1
            else:
              predictions[i]=0

          predictions_5_j.append(predictions)

          # #AUC score
          auc_5 = metrics.roc_auc_score(y_test, predictions)     
          auc_5_j.append(auc_5)
          #print('auc_5_j', auc_5_j)

#**********************************************************************KNN_sklearn
    if 'KNN_sklearn' in list_of_models:

      #print('*****************************************************************KNN from sklearn lib')
      
      from sklearn.neighbors import KNeighborsClassifier
      import time

      predictions_6_j = []
      auc_6_j = []

      for j in range(len(k)):
        model_name_6 = 'KNN_sklearn'
        # train knn detector
        neigh = KNeighborsClassifier(n_neighbors=k[j])
        neigh.fit(X_train,y_train)

        # get the prediction on the test data
        y_test_pred_6 = neigh.predict(X_test)
        #*****************************************************
        predictions = [round(value) for value in y_test_pred_6]

        for i in range(0,len(predictions)):
          if predictions[i] > 0.5:
            predictions[i]=1
          else:
            predictions[i]=0

        predictions_6_j.append(predictions)
        
        # #AUC score
        auc_6 = metrics.roc_auc_score(y_test, predictions)     
        auc_6_j.append(auc_6)
        #print('auc_6_j', auc_6_j)

#**********************************************************
    if 'LOF_sklearn' in list_of_models:

      #print('*****************************************************************LOF from sklearn lib')
      
      from sklearn.neighbors import LocalOutlierFactor
      import time

      predictions_9_j = []
      auc_9_j = []

      for j in range(len(k)):
        model_name_9 = 'LOF_sklearn'
        # train knn detector
        neigh = LocalOutlierFactor(n_neighbors=k[j],novelty=True, contamination=contamination)
        start = time.time()
        neigh.fit(X_train)

        # get the prediction on the test data
        y_test_pred_9 = neigh.predict(X_test)

        #*****************************************************
        predictions = [round(value) for value in y_test_pred_9]
        for i in range(0,len(predictions)):
          if predictions[i] > 0.5:
            predictions[i]=1
          else:
            predictions[i]=0

        predictions_9_j.append(predictions)

        # #AUC score
        auc_9 = metrics.roc_auc_score(y_test, predictions)     
        auc_9_j.append(auc_9)

    #print(auc_1_j)

    if 'HBOS_pyod' in list_of_models:
      plt.plot(k,auc_1_j,marker='.',label="HBOS_pyod")

    if 'KNN_pyod' in list_of_models:
      plt.plot(k,auc_2_j,marker='.',label="KNN_pyod")

    if 'LOF_pyod' in list_of_models:
      plt.plot(k,auc_4_j,marker='.',label="LOF_pyod")

    if 'XBOS' in list_of_models:
      plt.plot(k,auc_5_j,marker='.',label="XBOS")

    if 'KNN_sklearn' in list_of_models:
      plt.plot(k,auc_6_j,marker='.',label="KNN_sklearn")

    if 'LOF_sklearn' in list_of_models:
      plt.plot(k,auc_9_j,marker='.',label="LOF_sklearn")      

    plt.title('ROC-Curve')
    plt.ylabel('AUC')
    plt.xlabel('K')
    #plt.axis([0, 15, 0., 1.0])
    #plt.xlim(k)
    plt.xticks(np.arange(0, 100.005, 20))
    plt.yticks(np.arange(0, 1.005, step=0.05))  # Set label locations
    plt.ylim(0.0, 1.01)
    #plt.legend(loc=0)
    plt.legend(bbox_to_anchor=(1.04,1), loc="upper left")
    plt.show()    

Download breast cancer wisconsin dataset from sklearn:

import pandas as pd
import numpy as np

from sklearn.model_selection import train_test_split 
import matplotlib.pyplot as plt
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
import time
from sklearn import metrics
from sklearn.datasets import load_breast_cancer

Bw = load_breast_cancer(
                        return_X_y=False,
                        as_frame=True)
df = Bw.frame
name_target = 'target'

#change types of feature columns
#df['duration']=df['duration'].astype(float)
#df['src_bytes']=df['src_bytes'].astype(float)
#df['dst_bytes']=df['dst_bytes'].astype(float)

num_row , num_colmn = df.shape

#calculate number of classes
classes = df[name_target].unique()
num_class = len(classes)

print(df[name_target].value_counts())

#determine which class is normal (is not anomaly)
label = np.array(df[name_target])
a,b = np.unique(label , return_counts=True)
#print("a is:",a)
#print("b is:",b)
for i in range(len(b)):
  if b[i]== b.max():
    normal = a[i]
    #print('normal:', normal)
  elif b[i] == b.min():
    unnormal = a[i]
    #print('unnorm:' ,unnormal) 

# show anomaly classes
anomaly_class = []
for f in range(len(a)): 
  if a[f] != normal:
    anomaly_class.append(a[f])

# convert dataset classes to 2 classe: normal and unnormal
label = np.where(label != normal, unnormal ,label)
df[name_target]=label

# showing columns's type: numerical or categorical
numeric =0
categoric = 0
for i in range(df.shape[1]):
  df_col = df.iloc[:,i]
  if df_col.dtype == int and df.columns[i] != name_target:
    numeric +=1
  elif df_col.dtype == float and df.columns[i] != name_target:
    numeric += 1
  elif df.columns[i] != name_target:
    categoric += 1

#replace labels with 0 and 1
label = np.where(label == normal, 0 ,1)
df[name_target]=label


# null_check: if more than half of a column was null, then that columns will be droped
# otherwise if number of null was less than half of column, then nulls will replace with mean of that column
test = []
for i in range(df.shape[1]):
  if df.iloc[:,i].isnull().sum() > df.shape[0]//2:
    test.append(i)
  elif df.iloc[:,i].isnull().sum() < df.shape[0]//2 and df.iloc[:,i].isnull().sum() != 0:
    m = df.iloc[:,i].mean()
    df.iloc[:,i] = df.iloc[:,i].replace(to_replace = np.nan, value = m)
df = df.drop(columns=df.columns[test])



#calculate anomaly rate 
b = df[name_target].value_counts()
Anomaly_rate= b[1] / (b[0]+b[1])
print('=============Anomaly_rate=================')
print(Anomaly_rate)
contamination= float("{:.4f}".format(Anomaly_rate))
print('=============contamination=================')
print(contamination)
#rename labels column
df = df.rename(columns = {'labels' : 'binary_target'})   

#df.to_csv(f'/content/{dataset_name}.csv', index = False) 

I checked this post wasn't useful for this question to get the plot. So far my output is following:

img

Please note that this ROC plot is over different K (number of nearest neighbours).

update: I provided with Google colab notebook to troubleshoot faster if someone is interested in running the code.



Solution 1:[1]

As I said in the comments, one of the main issues is that you're not creating the AUCs correctly. The ROC curve requires a continuous measure of confidence, not just the hard class predictions, so you should replace all the predict calls by decision_function or predict_proba as available, and drop all of the code that replaces predictions by 0 or 1.

There's at least one other issue: the sklearn LocalOutlierFactory uses a reversed sense of inliers: predict returns 1 for inliers and -1 for outliers, and the decision_function gives higher scores to inliers. That's why you see the AUCs consistently below 0.5. Use the negative of the decision function when computing the AUC and this will be fixed.

Here's what I get with those changes, and a few tweaks to plot smaller k-values (except for BDOS which cannot take k<=2), as well as limiting the y-axis as suggested (now that all the plots will show up in that range):
adjusted image shows higher scores and more variation with k
Not a perfect replica, but the train/test splits are probably different, I'm not sure if the preprocessing or hyperparameters are identical, ...

My copy of the notebook.

Sources

This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.

Source: Stack Overflow

Solution Source
Solution 1