'RuntimeError: Attempting to deserialize object on a CUDA device but torch.cuda.is_available() is False
RuntimeError: Attempting to deserialize object on a CUDA device but torch.cuda.is_available() is False. If you are running on a CPU-only machine, please use torch.load with map_location=torch.device('cpu') to map your storages to the CPU.
I am getting the above error for code:-
def get_model(path, device):
model = models.vgg16(pretrained=False)
for param in model.parameters():
param.requires_grad = False
n_inputs = model.classifier[6].in_features
model.classifier[6] = torch.nn.Sequential(
torch.nn.Linear(n_inputs, 256), torch.nn.ReLU(), torch.nn.Dropout(0.2),
torch.nn.Linear(256, 10), torch.nn.LogSoftmax(dim=1))
model.load_state_dict(torch.load(path), map_location=torch.device('cpu'))
model.to(device)
model.eval()
return model
device = torch.device("cpu")
model = get_model('vgg16.pt', device)
Solution 1:[1]
You are passing the map_location
to the wrong function (to model.load_state_dict
instead of torch.load
).
The corrected line would look like this:
model.load_state_dict(torch.load(path, map_location=torch.device('cpu')))
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
Solution | Source |
---|---|
Solution 1 | CherryDT |