'Set MultiIndex of an existing DataFrame in pandas
I have a DataFrame
that looks like
Emp1 Empl2 date Company
0 0 0 2012-05-01 apple
1 0 1 2012-05-29 apple
2 0 1 2013-05-02 apple
3 0 1 2013-11-22 apple
18 1 0 2011-09-09 google
19 1 0 2012-02-02 google
20 1 0 2012-11-26 google
21 1 0 2013-05-11 google
I want to pass the company and date for setting a MultiIndex
for this DataFrame
. Currently it has a default index. I am using df.set_index(['Company', 'date'], inplace=True)
df = pd.DataFrame()
for c in company_list:
row = pd.DataFrame([dict(company = '%s' %s, date = datetime.date(2012, 05, 01))])
df = df.append(row, ignore_index = True)
for e in emp_list:
dataset = pd.read_sql("select company, emp_name, date(date), count(*) from company_table where = '"+s+"' and emp_name = '"+b+"' group by company, date, name LIMIT 5 ", con)
if len(dataset) == 0:
row = pd.DataFrame([dict(sitename='%s' %s, name = '%s' %b, date = datetime.date(2012, 05, 01), count = np.nan)])
dataset = dataset.append(row, ignore_index=True)
dataset = dataset.rename(columns = {'count': '%s' %b})
dataset = dataset.groupby(['company', 'date', 'emp_name'], as_index = False).sum()
dataset = dataset.drop('emp_name', 1)
df = pd.merge(df, dataset, how = '')
df = df.sort('date', ascending = True)
df.fillna(0, inplace = True)
df.set_index(['Company', 'date'], inplace=True)
print df
But when I print this DataFrame
, it prints None
. Is this not the correct way of doing it? Also I want to shuffle the positions of the columns company and date so that company becomes the first index, and date becomes the second in Hierarchy. Any ideas on this?
Solution 1:[1]
When you pass inplace in makes the changes on the original variable and returns None, and the function does not return the modified dataframe, it returns None.
is_none = df.set_index(['Company', 'date'], inplace=True)
df # the dataframe you want
is_none # has the value None
so when you have a line like:
df = df.set_index(['Company', 'date'], inplace=True)
it first modifies df
... but then it sets df
to None!
That is, you should just use the line:
df.set_index(['Company', 'date'], inplace=True)
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
Solution | Source |
---|---|
Solution 1 | Andy Hayden |