'Sort dataframe multiindex level and by column

#Updated: pandas version 0.23.0 solves this problem with

Sorting by a combination of columns and index levels


I have struggled with this and I suspect there is a better way. How do I sort the following dataframe by index level name 'idx_0', level=0 and by column, 'value_1' descending such that the column 'MyName' reads vertical 'SCOTTBOSTON'.

import pandas as pd
import numpy as np
df = pd.DataFrame({'idx_0':[2]*6+[1]*5,
                   'idx_1':[6,4,2,10,18,5,11,1,7,9,3],
                   'value_1':np.arange(11,0,-1),
                   'MyName':list('BOSTONSCOTT')})

df = df.set_index(['idx_0','idx_1'])
df

Output:

            MyName  value_1
idx_0 idx_1                
2     6          B       11
      4          O       10
      2          S        9
      10         T        8
      18         O        7
      5          N        6
1     11         S        5
      1          C        4
      7          O        3
      9          T        2
      3          T        1

#Excepted output using:

df.sort_values(['value_1'], ascending=False)\
  .reindex(sorted(df.index.get_level_values(0).unique()), level=0)

I suspect there is an easier way without resetting indexes

            MyName  value_1
idx_0 idx_1                
1     11         S        5
      1          C        4
      7          O        3
      9          T        2
      3          T        1
2     6          B       11
      4          O       10
      2          S        9
      10         T        8
      18         O        7
      5          N        6

Failure #1:

df.sort_values('value_1', ascending=False).sort_index(level=0)

Sort by values first then sort index level=0, but level=1 get sorted also.

            MyName  value_1
idx_0 idx_1                
1     1          C        4
      3          T        1
      7          O        3
      9          T        2
      11         S        5
2     2          S        9
      4          O       10
      5          N        6
      6          B       11
      10         T        8
      18         O        7

Failure #2

df.sort_index(level=0).sort_values('value_1', ascending=False)

Sort by index level=0 then sort by values, but index=0 gets jumbled again.

            MyName  value_1
idx_0 idx_1                
2     6          B       11
      4          O       10
      2          S        9
      10         T        8
      18         O        7
      5          N        6
1     11         S        5
      1          C        4
      7          O        3
      9          T        2
      3          T        1


Solution 1:[1]

Here are some potential solutions for your needs:

Method-1:

 (df.sort_values('value_1', ascending=False)
    .sort_index(level=[0], ascending=[True]))

Method-2:

 (df.set_index('value_1', append=True)
    .sort_index(level=[0,2], ascending=[True,False])
    .reset_index('value_1'))

Tested on pandas 0.22.0, Python 3.6.4

Solution 2:[2]

Here is my ugly option:

In [139]: (df.assign(x=df.index.get_level_values(0) * \
                       10**np.ceil(np.log10(df.value_1.max()))-df.value_1)
             .sort_values('x')
             .drop('x',1))
Out[139]:
            MyName  value_1
idx_0 idx_1
1     11         S        5
      1          C        4
      7          O        3
      9          T        2
      3          T        1
2     6          B       11
      4          O       10
      2          S        9
      10         T        8
      18         O        7
      5          N        6

some explanations:

In [140]: np.ceil(np.log10(df.value_1.max()))
Out[140]: 2.0

In [141]: df.assign(x=df.index.get_level_values(0)*10**np.ceil(np.log10(df.value_1.max()))-df.value_1)
Out[141]:
            MyName  value_1      x
idx_0 idx_1
2     6          B       11  189.0
      4          O       10  190.0
      2          S        9  191.0
      10         T        8  192.0
      18         O        7  193.0
      5          N        6  194.0
1     11         S        5   95.0
      1          C        4   96.0
      7          O        3   97.0
      9          T        2   98.0
      3          T        1   99.0

another option is to add idx_0 sort by it and by value_1 and drop that additional column:

In [142]: (df.assign(x=df.index.get_level_values(0)).sort_values(['x', 'value_1'], ascending=[1,0])
             .drop('x',1))
Out[142]:
            MyName  value_1
idx_0 idx_1
1     11         S        5
      1          C        4
      7          O        3
      9          T        2
      3          T        1
2     6          B       11
      4          O       10
      2          S        9
      10         T        8
      18         O        7
      5          N        6

Solution 3:[3]

Update using pandas version 0.23.0

Sorting by a combination of columns and index levels

df.sort_values(by=['idx_0','value_1'], ascending=[True,False])
 

output:

             value_1 MyName
idx_0 idx_1                
1     11           5      S
      1            4      C
      7            3      O
      9            2      T
      3            1      T
2     6           11      B
      4           10      O
      2            9      S
      10           8      T
      18           7      O
      5            6      N

Interestingly enough, @jxc pointed out a solution that I thought should work and was almost exactly as my first failure.

df.sort_values('value_1', ascending=False)\
  .sort_index(level=0, ascending=[True])

It is the passing ascending as a list which makes the above statement work as excepted. I think in pandas passing a scalar value and a list of one should work the same. However, in this case, it appears not to work the same.

I'll submit a bug report.

Sources

This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.

Source: Stack Overflow

Solution Source
Solution 1
Solution 2 MaxU - stop genocide of UA
Solution 3