'Torchtext 0.7 shows Field is being deprecated. What is the alternative?
Looks like the previous paradigm of declaring Fields, Examples and using BucketIterator is deprecated and will move to legacy in 0.8. However, I don't seem to be able to find an example of the new paradigm for custom datasets (as in, not the ones included in torch.datasets) that doesn't use Field. Can anyone point me at an up-to-date example?
Reference for deprecation:
Solution 1:[1]
It took me a little while to find the solution myself. The new paradigm is like so for prebuilt datasets:
from torchtext.experimental.datasets import AG_NEWS
train, test = AG_NEWS(ngrams=3)
or like so for custom built datasets:
from torch.utils.data import DataLoader
def collate_fn(batch):
texts, labels = [], []
for label, txt in batch:
texts.append(txt)
labels.append(label)
return texts, labels
dataloader = DataLoader(train, batch_size=8, collate_fn=collate_fn)
for idx, (texts, labels) in enumerate(dataloader):
print(idx, texts, labels)
I've copied the examples from the Source
Solution 2:[2]
Browsing through torchtext
's GitHub repo I stumbled over the README in the legacy directory, which is not documented in the official docs. The README links a GitHub issue that explains the rationale behind the change as well as a migration guide.
If you just want to keep your existing code running with torchtext
0.9.0, where the deprecated classes have been moved to the legacy
module, you have to adjust your imports:
# from torchtext.data import Field, TabularDataset
from torchtext.legacy.data import Field, TabularDataset
Alternatively, you can import the whole torchtext.legacy
module as torchtext
as suggested by the README:
import torchtext.legacy as torchtext
Solution 3:[3]
There is a post regarding this. Instead of the deprecated Field
and BucketIterator
classes, it uses the TextClassificationDataset
along with the collator and other preprocessing. It reads a txt file and builds a dataset, followed by a model. Inside the post, there is a link to a complete working notebook. The post is at: https://mmg10.github.io/pytorch/2021/02/16/text_torch.html. But you need the 'dev' (or nightly build) of PyTorch for it to work.
From the link above:
After tokenization and building vocabulary, you can build the dataset as follows
def data_to_dataset(data, tokenizer, vocab):
data = [(text, label) for (text, label) in data]
text_transform = sequential_transforms(tokenizer.tokenize,
vocab_func(vocab),
totensor(dtype=torch.long)
)
label_transform = sequential_transforms(lambda x: 1 if x =='1' else (0 if x =='0' else x),
totensor(dtype=torch.long)
)
transforms = (text_transform, label_transform)
dataset = TextClassificationDataset(data, vocab, transforms)
return dataset
The collator is as follows:
def __init__(self, pad_idx):
self.pad_idx = pad_idx
def collate(self, batch):
text, labels = zip(*batch)
labels = torch.LongTensor(labels)
text = nn.utils.rnn.pad_sequence(text, padding_value=self.pad_idx, batch_first=True)
return text, labels
Then, you can build the dataloader with the typical torch.utils.data.DataLoader
using the collate_fn
argument.
Solution 4:[4]
Well it seems like pipeline could be like that:
import torchtext as TT
import torch
from collections import Counter
from torchtext.vocab import Vocab
# read the data
with open('text_data.txt','r') as f:
data = f.readlines()
with open('labels.txt', 'r') as f:
labels = f.readlines()
tokenizer = TT.data.utils.get_tokenizer('spacy', 'en') # can remove 'spacy' and use a simple built-in tokenizer
train_iter = zip(labels, data)
counter = Counter()
for (label, line) in train_iter:
counter.update(tokenizer(line))
vocab = TT.vocab.Vocab(counter, min_freq=1)
text_pipeline = lambda x: [vocab[token] for token in tokenizer(x)]
# this is data-specific - adapt for your data
label_pipeline = lambda x: 1 if x == 'positive\n' else 0
class TextData(torch.utils.data.Dataset):
'''
very basic dataset for processing text data
'''
def __init__(self, labels, text):
super(TextData, self).__init__()
self.labels = labels
self.text = text
def __getitem__(self, index):
return self.labels[index], self.text[index]
def __len__(self):
return len(self.labels)
def tokenize_batch(batch, max_len=200):
'''
tokenizer to use in DataLoader
takes a text batch of text dataset and produces a tensor batch, converting text and labels though tokenizer, labeler
tokenizer is a global function text_pipeline
labeler is a global function label_pipeline
max_len is a fixed len size, if text is less than max_len it is padded with ones (pad number)
if text is larger that max_len it is truncated but from the end of the string
'''
labels_list, text_list = [], []
for _label, _text in batch:
labels_list.append(label_pipeline(_label))
text_holder = torch.ones(max_len, dtype=torch.int32) # fixed size tensor of max_len
processed_text = torch.tensor(text_pipeline(_text), dtype=torch.int32)
pos = min(200, len(processed_text))
text_holder[-pos:] = processed_text[-pos:]
text_list.append(text_holder.unsqueeze(dim=0))
return torch.FloatTensor(labels_list), torch.cat(text_list, dim=0)
train_dataset = TextData(labels, data)
train_loader = DataLoader(train_dataset, batch_size=2, shuffle=False, collate_fn=tokenize_batch)
lbl, txt = iter(train_loader).next()
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
Solution | Source |
---|---|
Solution 1 | Steven |
Solution 2 | Tobias Uhmann |
Solution 3 | |
Solution 4 | crispengari |