'using statsmodels with a groupby
Consider this simple example
import pandas as pd
import statsmodels.formula.api as sm
df = pd.DataFrame({'Y' : [1,2,3,4,5,6,7],
'X' : [2,3,4,5,6,3,2],
'group' : ['a','a','a','a','b','b','b']})
df
Out[99]:
Y X group
0 1 2 a
1 2 3 a
2 3 4 a
3 4 5 a
4 5 6 b
5 6 3 b
6 7 2 b
I would like to run a regression by group. I only have found very old answers or solutions with a loop. I just wonder why the very simple:
df.groupby('group').agg(lambda x: sm.ols(formula = 'Y ~ X', data = x))
PatsyError: Error evaluating factor: NameError: name 'X' is not defined
Y ~ X
does not work. Can we do better with the latest versions of Pandas (1.2.3)? Thanks!
Solution 1:[1]
You need to use the apply
function -
df.groupby('group').apply(lambda x: sm.ols(formula = 'Y ~ X', data = x))
Output
group
a <statsmodels.regression.linear_model.OLS objec...
b <statsmodels.regression.linear_model.OLS objec...
dtype: object
You now have a model for every group fit and ready to go.
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
Solution | Source |
---|---|
Solution 1 | Vivek Kalyanarangan |