'using time zone in pandas to_datetime

I have time from epochs timestamps I use data.Time_req = pd.to_datetime(data.Time_req) But I get UTC time, I need +5:30 from the given time. How do I tell pandas to use 'IST' timezone or just 5hrs 30 mins further to the time it currently shows me. eg. 7 hrs should become 12:30 hrs and so on.



Solution 1:[1]

You can use tz_localize to set the timezone to UTC/+0000, and then tz_convert to add the timezone you want:

start = pd.to_datetime('2015-02-24')
rng = pd.date_range(start, periods=10)

df = pd.DataFrame({'Date': rng, 'a': range(10)})  

df.Date = df.Date.dt.tz_localize('UTC').dt.tz_convert('Asia/Kolkata')
print (df)
                       Date  a
0 2015-02-24 05:30:00+05:30  0
1 2015-02-25 05:30:00+05:30  1
2 2015-02-26 05:30:00+05:30  2
3 2015-02-27 05:30:00+05:30  3
4 2015-02-28 05:30:00+05:30  4
5 2015-03-01 05:30:00+05:30  5
6 2015-03-02 05:30:00+05:30  6
7 2015-03-03 05:30:00+05:30  7
8 2015-03-04 05:30:00+05:30  8
9 2015-03-05 05:30:00+05:30  9

Working with time zones.

If need add Timedelta only:

df.Date = df.Date + pd.Timedelta('05:30:00')
print (df)
                 Date  a
0 2015-02-24 05:30:00  0
1 2015-02-25 05:30:00  1
2 2015-02-26 05:30:00  2
3 2015-02-27 05:30:00  3
4 2015-02-28 05:30:00  4
5 2015-03-01 05:30:00  5
6 2015-03-02 05:30:00  6
7 2015-03-03 05:30:00  7
8 2015-03-04 05:30:00  8
9 2015-03-05 05:30:00  9

NOTE: Adding Timedelta will change the epoch timestamp associated with the datetime object. This may not be desired for many applications.

Sources

This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.

Source: Stack Overflow

Solution Source
Solution 1 arturomp