'What causes these Int64 columns to cause a TypeError?
I have a pandas DataFrame with several flag/dummy variables of type Int64
.
I am aggregating on other fields and taking the mean value in order to calculate a percent.
df.groupby(["key1", "key2"]).mean()
When I try to take the mean, I get the TypeError: cannot safely cast non-equivalent float64 to int64.
When I try to take the mean of each column one-by-one, I don't receive the error.
I am trying to understand what could cause the error. Any insight would be greatly appreciated.
Here is a description of the data:
In:
df.info()
Out:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 6910491 entries, 82222 to 6858085
Data columns (total 5 columns):
# Column Dtype
--- ------ -----
0 key1 object
1 key2 object
2 cond1 int64
3 cond2 Int64
4 cond1and2 Int64
dtypes: Int64(2), int64(1), object(2)
memory usage: 329.5+ MB
In:
df.describe()
Out:
cond1 cond2 cond1and2
count 6.910491e+06 6.910491e+06 6.910491e+06
mean 2.004735e-02 1.050030e-01 6.695038e-03
std 1.401622e-01 3.065573e-01 8.154885e-02
min 0.000000e+00 0.000000e+00 0.000000e+00
25% 0.000000e+00 0.000000e+00 0.000000e+00
50% 0.000000e+00 0.000000e+00 0.000000e+00
75% 0.000000e+00 0.000000e+00 0.000000e+00
max 1.000000e+00 1.000000e+00 1.000000e+00
In:
[print(df[c].value_counts(), "\n\n") for c in df]
Out:
c 2220221
d 2208322
b 2195117
a 286831
Name: key1, dtype: int64
1 1925173
4 1680848
3 1656101
2 1648369
Name: key2, dtype: int64
0 6771954
1 138537
Name: cond1, dtype: int64
0 6184869
1 725622
Name: cond2, dtype: Int64
0 6864225
1 46266
Name: cond1and2, dtype: Int64
[None, None, None, None, None]
In:
df.groupby(['key1', 'key2']).mean()
Out:
TypeError Traceback (most recent call last)
C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\arrays\integer.py in safe_cast(values, dtype, copy)
143 try:
--> 144 return values.astype(dtype, casting="safe", copy=copy)
145 except TypeError:
TypeError: Cannot cast array from dtype('float64') to dtype('int64') according to the rule 'safe'
During handling of the above exception, another exception occurred:
TypeError Traceback (most recent call last)
<ipython-input-70-5cec730bfc37> in <module>
----> 1 df.groupby(['key1', 'key2']).mean()
C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\groupby\groupby.py in mean(self, *args, **kwargs)
1230 nv.validate_groupby_func("mean", args, kwargs, ["numeric_only"])
1231 return self._cython_agg_general(
-> 1232 "mean", alt=lambda x, axis: Series(x).mean(**kwargs), **kwargs
1233 )
1234
C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\groupby\generic.py in _cython_agg_general(self, how, alt, numeric_only, min_count)
1002 ) -> DataFrame:
1003 agg_blocks, agg_items = self._cython_agg_blocks(
-> 1004 how, alt=alt, numeric_only=numeric_only, min_count=min_count
1005 )
1006 return self._wrap_agged_blocks(agg_blocks, items=agg_items)
C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\groupby\generic.py in _cython_agg_blocks(self, how, alt, numeric_only, min_count)
1091 # Cast back if feasible
1092 result = type(block.values)._from_sequence(
-> 1093 result.ravel(), dtype=block.values.dtype
1094 )
1095 except ValueError:
C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\arrays\integer.py in _from_sequence(cls, scalars, dtype, copy)
348 @classmethod
349 def _from_sequence(cls, scalars, dtype=None, copy=False):
--> 350 return integer_array(scalars, dtype=dtype, copy=copy)
351
352 @classmethod
C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\arrays\integer.py in integer_array(values, dtype, copy)
129 TypeError if incompatible types
130 """
--> 131 values, mask = coerce_to_array(values, dtype=dtype, copy=copy)
132 return IntegerArray(values, mask)
133
C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\arrays\integer.py in coerce_to_array(values, dtype, mask, copy)
245 values = safe_cast(values, dtype, copy=False)
246 else:
--> 247 values = safe_cast(values, dtype, copy=False)
248
249 return values, mask
C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\arrays\integer.py in safe_cast(values, dtype, copy)
150
151 raise TypeError(
--> 152 f"cannot safely cast non-equivalent {values.dtype} to {np.dtype(dtype)}"
153 )
154
TypeError: cannot safely cast non-equivalent float64 to int64
Solution 1:[1]
It could be that you have Nan
values (considered as floats) in the initial dataframe, thus the error message.
Try this:
df = df.fillna(0) # replace Nan values with 0
df.groupby(["key1", "key2"]).mean()
Solution 2:[2]
You can change your datatypes of selected columns like:
Exclude object
type then change type as needed:
# This line will give you numeric type list
lst = list(df.select_dtypes(exclude= 'object').columns)
df[lst] = df[lst].astype('int64')
Solution 3:[3]
Int64
(nullable array) is not the same as int64
(Read more about that here and here).
In order to solve that, change the datatype of those columns with
df[['cond2', 'cond1and2']] = df[['cond2', 'cond1and2']].astype('int64')
or
import numpy as np
df[['cond2', 'cond1and2']] = df[['cond2', 'cond1and2']].astype(np.int64)
Note: If one has missing values (df.describe()
may help one detect them.), there are various ways to handle that: remove the rows with missing values or fill the cells that are missing.
Missing values are frequently indicated by out-of-range entries; perhaps a negative number (e.g., -1) in a numeric field that is normally only positive, or a 0 in a numeric field that can never normally be 0. (Witten, I. H. (2016). Data Mining: Practical Machine Learning Tools and Techniques)
For more information on missing values:
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
Solution | Source |
---|---|
Solution 1 | Laurent |
Solution 2 | Inputvector |
Solution 3 | Gonçalo Peres |