'Can't pickle static method when using multiprocessing
I'm applying some parallelization to my code, in which I use classes. I knew that is not possible to pickle a class method without any other approach different of what Python provides. I found a solution here.
In my code, I have two parts that should be parallelized, both using class. Here, I'm posting a very simple code just representing the structure of mine (is the same, but I deleted the methods content, which was a lot of math calculus, insignificant for the output that I'm getting).
The problem is while I can pickle one method (shepard_interpolation
), with the other one (calculate_orientation_uncertainty
) I got the pickle error. I don't know why this is happing, or why it works partly.
def _pickle_method(method):
func_name = method.im_func.__name__
obj = method.im_self
cls = method.im_class
if func_name.startswith('__') and not func_name.endswith('__'): #deal with mangled names
cls_name = cls.__name__.lstrip('_')
func_name = '_' + cls_name + func_name
print cls
return _unpickle_method, (func_name, obj, cls)
def _unpickle_method(func_name, obj, cls):
for cls in cls.__mro__:
try:
func = cls.__dict__[func_name]
except KeyError:
pass
else:
break
return func.__get__(obj, cls)
class ImageData(object):
def __init__(self, width=60, height=60):
self.width = width
self.height = height
self.data = []
for i in range(width):
self.data.append([0] * height)
def shepard_interpolation(self, seeds=20):
print "ImD - Sucess"
import copy_reg
import types
from itertools import product
from multiprocessing import Pool
copy_reg.pickle(types.MethodType, _pickle_method, _unpickle_method)
class VariabilityOfGradients(object):
def __init__(self):
pass
@staticmethod
def aux():
return "VoG - Sucess"
@staticmethod
def calculate_orientation_uncertainty():
results = []
pool = Pool()
for x, y in product(range(1, 5), range(1, 5)):
result = pool.apply_async(VariabilityOfGradients.aux)
results.append(result.get())
pool.close()
pool.join()
if __name__ == '__main__':
results = []
pool = Pool()
for _ in range(3):
result = pool.apply_async(ImageData.shepard_interpolation, args=[ImageData()])
results.append(result.get())
pool.close()
pool.join()
VariabilityOfGradients.calculate_orientation_uncertainty()
When running, I got
PicklingError: Can't pickle <type 'function'>: attribute lookup __builtin__.function failed
And this is almost the same found here. The only difference that I see is that my methods are static.
I noticed that in my calculate_orientation_uncertainty
, when I call the function as result = pool.apply_async(VariabilityOfGradients.aux())
, i.e., with the parenthesis (in the doc examples I never saw this), it seems to work. But, when I try to get the result, I receive
TypeError: 'int' object is not callable
How can I do this correctly?
Solution 1:[1]
You could define a plain function at the module level and a staticmethod as well. This preserves the calling syntax, introspection and inheritability features of a staticmethod, while avoiding the pickling problem:
def aux():
return "VoG - Sucess"
class VariabilityOfGradients(object):
aux = staticmethod(aux)
For example,
import copy_reg
import types
from itertools import product
import multiprocessing as mp
def _pickle_method(method):
"""
Author: Steven Bethard (author of argparse)
http://bytes.com/topic/python/answers/552476-why-cant-you-pickle-instancemethods
"""
func_name = method.im_func.__name__
obj = method.im_self
cls = method.im_class
cls_name = ''
if func_name.startswith('__') and not func_name.endswith('__'):
cls_name = cls.__name__.lstrip('_')
if cls_name:
func_name = '_' + cls_name + func_name
return _unpickle_method, (func_name, obj, cls)
def _unpickle_method(func_name, obj, cls):
"""
Author: Steven Bethard
http://bytes.com/topic/python/answers/552476-why-cant-you-pickle-instancemethods
"""
for cls in cls.mro():
try:
func = cls.__dict__[func_name]
except KeyError:
pass
else:
break
return func.__get__(obj, cls)
copy_reg.pickle(types.MethodType, _pickle_method, _unpickle_method)
class ImageData(object):
def __init__(self, width=60, height=60):
self.width = width
self.height = height
self.data = []
for i in range(width):
self.data.append([0] * height)
def shepard_interpolation(self, seeds=20):
print "ImD - Success"
def aux():
return "VoG - Sucess"
class VariabilityOfGradients(object):
aux = staticmethod(aux)
@staticmethod
def calculate_orientation_uncertainty():
pool = mp.Pool()
results = []
for x, y in product(range(1, 5), range(1, 5)):
# result = pool.apply_async(aux) # this works too
result = pool.apply_async(VariabilityOfGradients.aux, callback=results.append)
pool.close()
pool.join()
print(results)
if __name__ == '__main__':
results = []
pool = mp.Pool()
for _ in range(3):
result = pool.apply_async(ImageData.shepard_interpolation, args=[ImageData()])
results.append(result.get())
pool.close()
pool.join()
VariabilityOfGradients.calculate_orientation_uncertainty()
yields
ImD - Success
ImD - Success
ImD - Success
['VoG - Sucess', 'VoG - Sucess', 'VoG - Sucess', 'VoG - Sucess', 'VoG - Sucess', 'VoG - Sucess', 'VoG - Sucess', 'VoG - Sucess', 'VoG - Sucess', 'VoG - Sucess', 'VoG - Sucess', 'VoG - Sucess', 'VoG - Sucess', 'VoG - Sucess', 'VoG - Sucess', 'VoG - Sucess']
By the way, result.get() blocks the calling process until the function called by pool.apply_async
(e.g. ImageData.shepard_interpolation
) is completed. So
for _ in range(3):
result = pool.apply_async(ImageData.shepard_interpolation, args=[ImageData()])
results.append(result.get())
is really calling ImageData.shepard_interpolation
sequentially, defeating the purpose of the pool.
Instead you could use
for _ in range(3):
pool.apply_async(ImageData.shepard_interpolation, args=[ImageData()],
callback=results.append)
The callback function (e.g. results.append
) is called in a thread of the calling process when the function is completed. It is sent one argument -- the return value of the function. Thus nothing blocks the three pool.apply_async
calls from being made quickly, and the work done by the three calls to ImageData.shepard_interpolation
will be performed concurrently.
Alternatively, it might be simpler to just use pool.map
here.
results = pool.map(ImageData.shepard_interpolation, [ImageData()]*3)
Solution 2:[2]
If you use a fork of multiprocessing
called pathos.multiprocesssing
, you can directly use classes and class methods in multiprocessing's map
functions. This is because dill
is used instead of pickle
or cPickle
, and dill
can serialize almost anything in python.
pathos.multiprocessing
also provides an asynchronous map function… and it can map
functions with multiple arguments (e.g. map(math.pow, [1,2,3], [4,5,6])
)
See: What can multiprocessing and dill do together?
and: http://matthewrocklin.com/blog/work/2013/12/05/Parallelism-and-Serialization/
>>> from pathos.multiprocessing import ProcessingPool as Pool
>>>
>>> p = Pool(4)
>>>
>>> def add(x,y):
... return x+y
...
>>> x = [0,1,2,3]
>>> y = [4,5,6,7]
>>>
>>> p.map(add, x, y)
[4, 6, 8, 10]
>>>
>>> class Test(object):
... def plus(self, x, y):
... return x+y
...
>>> t = Test()
>>>
>>> p.map(Test.plus, [t]*4, x, y)
[4, 6, 8, 10]
>>>
>>> p.map(t.plus, x, y)
[4, 6, 8, 10]
Get the code here: https://github.com/uqfoundation/pathos
pathos
also has an asynchronous map (amap
), as well as imap
.
Solution 3:[3]
I'm not sure if this is what you are looking for but my use was slightly different. I wanted to use a method from a class within the same class running on multiple threads.
This is how I implemented it:
from multiprocessing import Pool
class Product(object):
def __init__(self):
self.logger = "test"
def f(self, x):
print(self.logger)
return x*x
def multi(self):
p = Pool(5)
print(p.starmap(Product.f, [(Product(), 1), (Product(), 2), (Product(), 3)]))
if __name__ == '__main__':
obj = Product()
obj.multi()
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
Solution | Source |
---|---|
Solution 1 | |
Solution 2 | Community |
Solution 3 | Risav Jhunjhunwala |