'Comparing schema of dataframe using Pyspark
I have a data frame (df). For showing its schema I use:
from pyspark.sql.functions import *
df1.printSchema()
And I get the following result:
#root
# |-- name: string (nullable = true)
# |-- age: long (nullable = true)
Sometimes the schema changes (the column type or name):
df2.printSchema()
#root
# |-- name: array (nullable = true)
# |-- gender: integer (nullable = true)
# |-- age: long (nullable = true)
I would like to compare between the two schemas (df1 and df2) and get only the differences in types and columns names (Sometimes the column can move to another position).
The results should be a table (or data frame) something like this:
column df1 df2 diff
name: string array type
gender: N/A integer new column
(age column is the same and didn't change. In case of omission of column there will be indication 'omitted')
How can I do it if efficiently if I have many columns in each?
Solution 1:[1]
You can try creating two pandas dataframes with metadata from both DF1 and DF2 like below
pd_df1=pd.DataFrame(df1.dtypes,columns=['column','data_type'])
pd_df2=pd.DataFrame(df2.dtypes,columns=['column','data_type'])
and then join those two pandas dataframes through 'outer' join?
Solution 2:[2]
Without any external library, we can find the schema difference using
from pyspark.sql.session import SparkSession
from pyspark.sql import DataFrame
def schema_diff(spark: SparkSession, df_1: DataFrame, df_2: DataFrame):
s1 = spark.createDataFrame(df_1.dtypes, ["d1_name", "d1_type"])
s2 = spark.createDataFrame(df_2.dtypes, ["d2_name", "d2_type"])
difference = (
s1.join(s2, s1.d1_name == s2.d2_name, how="outer")
.where(s1.d1_type.isNull() | s2.d2_type.isNull())
.select(s1.d1_name, s1.d1_type, s2.d2_name, s2.d2_type)
.fillna("")
)
return difference
- fillna is optional. I prefer to view them as empty string.
- in where clause we use type because this will help us to show even if column exists in both dataframe but they have different schemas.
- this will also show all columns that are in second dataframe but not in first dataframe
Usage:
diff = schema_diff(spark, df_1, df_2)
diff.show(diff.count(), truncate=False)
Solution 3:[3]
A custom function that could be useful for someone.
def SchemaDiff(DF1, DF2):
# Getting schema for both dataframes in a dictionary
DF1Schema = {x[0]:x[1] for x in DF1.dtypes}
DF2Schema = {x[0]:x[1] for x in DF2.dtypes}
# Column present in DF1 but not in DF2
DF1MinusDF2 = dict.fromkeys((set(DF1.columns) - set(DF2.columns)), '')
for column_name in DF1MinusDF2:
DF1MinusDF2[column_name] = DF1Schema[column_name]
# Column present in DF2 but not in DF1
DF2MinusDF1 = dict.fromkeys((set(DF2.columns) - set(DF1.columns)), '')
for column_name in DF2MinusDF1:
DF2MinusDF1[column_name] = DF2Schema[column_name]
# Find data type changed in DF1 as compared to DF2
UpdatedDF1Schema = {k:v for k,v in DF1Schema.items() if k not in DF1MinusDF2}
UpdatedDF1Schema = {**UpdatedDF1Schema, **DF2MinusDF1}
DF1DataTypesChanged = {}
for column_name in UpdatedDF1Schema:
if UpdatedDF1Schema[column_name] != DF2Schema[column_name]:
DF1DataTypesChanged[column_name] = DF2Schema[column_name]
return DF1MinusDF2, DF2MinusDF1, DF1DataTypesChanged
Solution 4:[4]
you can simply use
df1.printSchema() == df2.printSchema()
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
| Solution | Source |
|---|---|
| Solution 1 | cts_superking |
| Solution 2 | Koby |
| Solution 3 | Ali Gohar |
| Solution 4 | Pytrick |
