'Convert csv to parquet file using python
I am trying to convert a .csv file to a .parquet file.
The csv file (Temp.csv
) has the following format
1,Jon,Doe,Denver
I am using the following python code to convert it into parquet
from pyspark import SparkContext
from pyspark.sql import SQLContext
from pyspark.sql.types import *
import os
if __name__ == "__main__":
sc = SparkContext(appName="CSV2Parquet")
sqlContext = SQLContext(sc)
schema = StructType([
StructField("col1", IntegerType(), True),
StructField("col2", StringType(), True),
StructField("col3", StringType(), True),
StructField("col4", StringType(), True)])
dirname = os.path.dirname(os.path.abspath(__file__))
csvfilename = os.path.join(dirname,'Temp.csv')
rdd = sc.textFile(csvfilename).map(lambda line: line.split(","))
df = sqlContext.createDataFrame(rdd, schema)
parquetfilename = os.path.join(dirname,'output.parquet')
df.write.mode('overwrite').parquet(parquetfilename)
The result is only a folder named, output.parquet
and not a parquet file that I'm looking for, followed by the following error on the console.
I have also tried running the following code to face a similar issue.
from pyspark.sql import SparkSession
import os
spark = SparkSession \
.builder \
.appName("Protob Conversion to Parquet") \
.config("spark.some.config.option", "some-value") \
.getOrCreate()
# read csv
dirname = os.path.dirname(os.path.abspath(__file__))
csvfilename = os.path.join(dirname,'Temp.csv')
df = spark.read.csv(csvfilename)
# Displays the content of the DataFrame to stdout
df.show()
parquetfilename = os.path.join(dirname,'output.parquet')
df.write.mode('overwrite').parquet(parquetfilename)
How to best do it? Using windows, python 2.7.
Solution 1:[1]
Using the packages pyarrow
and pandas
you can convert CSVs to Parquet without using a JVM in the background:
import pandas as pd
df = pd.read_csv('example.csv')
df.to_parquet('output.parquet')
One limitation in which you will run is that pyarrow
is only available for Python 3.5+ on Windows. Either use Linux/OSX to run the code as Python 2 or upgrade your windows setup to Python 3.6.
Solution 2:[2]
You can convert csv to parquet using pyarrow only - without pandas. It might be useful when you need to minimize your code dependencies (ex. with AWS Lambda).
import pyarrow.csv as pv
import pyarrow.parquet as pq
table = pv.read_csv(filename)
pq.write_table(table, filename.replace('csv', 'parquet'))
Refer to the pyarrow docs to fine-tune read_csv
and write_table
functions.
Solution 3:[3]
import boto3
import pandas as pd
import pyarrow as pa
from s3fs import S3FileSystem
import pyarrow.parquet as pq
s3 = boto3.client('s3',region_name='us-east-2')
obj = s3.get_object(Bucket='ssiworkoutput', Key='file_Folder/File_Name.csv')
df = pd.read_csv(obj['Body'])
table = pa.Table.from_pandas(df)
output_file = "s3://ssiworkoutput/file/output.parquet" # S3 Path need to mention
s3 = S3FileSystem()
pq.write_to_dataset(table=table,
root_path=output_file,partition_cols=['Year','Month'],
filesystem=s3)
print("File converted from CSV to parquet completed")
Solution 4:[4]
There are a few different ways to convert a CSV file to Parquet with Python.
Uwe L. Korn's Pandas approach works perfectly well.
Use Dask if you'd like to convert multiple CSV files to multiple Parquet / a single Parquet file. This will convert multiple CSV files into two Parquet files:
import dask.dataframe as dd
df = dd.read_csv('./data/people/*.csv')
df = df.repartition(npartitions=4)
df.to_parquet('./tmp/people_parquet4')
You could also use df.repartition(npartitions=1)
if you'd only like to output one Parquet file. More info on converting CSVs to Parquet with Dask here.
Here's a PySpark snippet that works in a Spark environment:
from pyspark.sql import SparkSession
spark = SparkSession.builder \
.master("local") \
.appName("parquet_example") \
.getOrCreate()
df = spark.read.csv('data/us_presidents.csv', header = True)
df.repartition(1).write.mode('overwrite').parquet('tmp/pyspark_us_presidents')
You can also use Koalas in a Spark environment:
import databricks.koalas as ks
df = ks.read_csv('data/us_presidents.csv')
df.to_parquet('tmp/koala_us_presidents')
Solution 5:[5]
You can write as a PARQUET FILE using spark:
spark = SparkSession.builder.appName("Test_Parquet").master("local[*]").getOrCreate()
parquetDF = spark.read.csv("data.csv")
parquetDF.coalesce(1).write.mode("overwrite").parquet("Parquet")
I hope this helps
Solution 6:[6]
from pyspark import SparkContext
from pyspark.sql import SQLContext
from pyspark.sql.types import *
import sys
sc = SparkContext(appName="CSV2Parquet")
sqlContext = SQLContext(sc)
schema = StructType([
StructField("col1", StringType(), True),
StructField("col2", StringType(), True),
StructField("col3", StringType(), True),
StructField("col4", StringType(), True),
StructField("col5", StringType(), True)])
rdd = sc.textFile('/input.csv').map(lambda line: line.split(","))
df = sqlContext.createDataFrame(rdd, schema)
df.write.parquet('/output.parquet')
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
Solution | Source |
---|---|
Solution 1 | Uwe L. Korn |
Solution 2 | taras |
Solution 3 | Amol More |
Solution 4 | Shoan |
Solution 5 | ishwar |
Solution 6 | Shuli Hakim |