'How can I determine validation loss for faster RCNN (PyTorch)?
I followed this tutorial for object detection: https://pytorch.org/tutorials/intermediate/torchvision_tutorial.html
and their GitHub repository that contains the following train_one_epoch
and evaluate
functions:
https://github.com/pytorch/vision/blob/main/references/detection/engine.py
However, I want to calculate losses during validation. I implemented this for the evaluation loss, where essentially to obtain losses, model.train()
needs to be on:
@torch.no_grad()
def evaluate_loss(model, data_loader, device):
val_loss = 0
model.train()
for images, targets in data_loader:
images = list(image.to(device) for image in images)
targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
loss_dict = model(images, targets)
losses = sum(loss for loss in loss_dict.values())
# reduce losses over all GPUs for logging purposes
loss_dict_reduced = utils.reduce_dict(loss_dict)
losses_reduced = sum(loss for loss in loss_dict_reduced.values())
val_loss += losses_reduced
validation_loss = val_loss/ len(data_loader)
return validation_loss
I then place it after the learning rate scheduler step in my for loop:
for epoch in range(args.num_epochs):
# train for one epoch, printing every 10 iterations
train_one_epoch(model, optimizer, train_data_loader, device, epoch, print_freq=10)
# update the learning rate
lr_scheduler.step()
validation_loss = evaluate_loss(model, valid_data_loader, device=device)
# evaluate on the test dataset
evaluate(model, valid_data_loader, device=device)
Does this look correct or can it interfere with training or produce inaccurate validation losses?
If ok, by using this, is there is a simple way in applying early stopping for validation loss?
I'm considering just adding something like this after the evaluate model function shown above:
torch.save({
'epoch': epoch,
'model_state_dict': net.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'validation loss': valid_loss,
}, PATH)
where I also aim to save the model at every epoch for checkpointing purposes. However I need to determine the validation "loss" for saving the "best" model.
Solution 1:[1]
So it turns out no stages of the pytorch fasterrcnn return losses when model.eval()
is set. However, you can just manually use the forward
code to generate the losses in evaluation mode:
from typing import Tuple, List, Dict, Optional
import torch
from torch import Tensor
from collections import OrderedDict
from torchvision.models.detection.roi_heads import fastrcnn_loss
from torchvision.models.detection.rpn import concat_box_prediction_layers
def eval_forward(model, images, targets):
# type: (List[Tensor], Optional[List[Dict[str, Tensor]]]) -> Tuple[Dict[str, Tensor], List[Dict[str, Tensor]]]
"""
Args:
images (list[Tensor]): images to be processed
targets (list[Dict[str, Tensor]]): ground-truth boxes present in the image (optional)
Returns:
result (list[BoxList] or dict[Tensor]): the output from the model.
It returns list[BoxList] contains additional fields
like `scores`, `labels` and `mask` (for Mask R-CNN models).
"""
model.eval()
original_image_sizes: List[Tuple[int, int]] = []
for img in images:
val = img.shape[-2:]
assert len(val) == 2
original_image_sizes.append((val[0], val[1]))
images, targets = model.transform(images, targets)
# Check for degenerate boxes
# TODO: Move this to a function
if targets is not None:
for target_idx, target in enumerate(targets):
boxes = target["boxes"]
degenerate_boxes = boxes[:, 2:] <= boxes[:, :2]
if degenerate_boxes.any():
# print the first degenerate box
bb_idx = torch.where(degenerate_boxes.any(dim=1))[0][0]
degen_bb: List[float] = boxes[bb_idx].tolist()
raise ValueError(
"All bounding boxes should have positive height and width."
f" Found invalid box {degen_bb} for target at index {target_idx}."
)
features = model.backbone(images.tensors)
if isinstance(features, torch.Tensor):
features = OrderedDict([("0", features)])
model.rpn.training=True
#model.roi_heads.training=True
#####proposals, proposal_losses = model.rpn(images, features, targets)
features_rpn = list(features.values())
objectness, pred_bbox_deltas = model.rpn.head(features_rpn)
anchors = model.rpn.anchor_generator(images, features_rpn)
num_images = len(anchors)
num_anchors_per_level_shape_tensors = [o[0].shape for o in objectness]
num_anchors_per_level = [s[0] * s[1] * s[2] for s in num_anchors_per_level_shape_tensors]
objectness, pred_bbox_deltas = concat_box_prediction_layers(objectness, pred_bbox_deltas)
# apply pred_bbox_deltas to anchors to obtain the decoded proposals
# note that we detach the deltas because Faster R-CNN do not backprop through
# the proposals
proposals = model.rpn.box_coder.decode(pred_bbox_deltas.detach(), anchors)
proposals = proposals.view(num_images, -1, 4)
proposals, scores = model.rpn.filter_proposals(proposals, objectness, images.image_sizes, num_anchors_per_level)
proposal_losses = {}
assert targets is not None
labels, matched_gt_boxes = model.rpn.assign_targets_to_anchors(anchors, targets)
regression_targets = model.rpn.box_coder.encode(matched_gt_boxes, anchors)
loss_objectness, loss_rpn_box_reg = model.rpn.compute_loss(
objectness, pred_bbox_deltas, labels, regression_targets
)
proposal_losses = {
"loss_objectness": loss_objectness,
"loss_rpn_box_reg": loss_rpn_box_reg,
}
#####detections, detector_losses = model.roi_heads(features, proposals, images.image_sizes, targets)
image_shapes = images.image_sizes
proposals, matched_idxs, labels, regression_targets = model.roi_heads.select_training_samples(proposals, targets)
box_features = model.roi_heads.box_roi_pool(features, proposals, image_shapes)
box_features = model.roi_heads.box_head(box_features)
class_logits, box_regression = model.roi_heads.box_predictor(box_features)
result: List[Dict[str, torch.Tensor]] = []
detector_losses = {}
loss_classifier, loss_box_reg = fastrcnn_loss(class_logits, box_regression, labels, regression_targets)
detector_losses = {"loss_classifier": loss_classifier, "loss_box_reg": loss_box_reg}
boxes, scores, labels = model.roi_heads.postprocess_detections(class_logits, box_regression, proposals, image_shapes)
num_images = len(boxes)
for i in range(num_images):
result.append(
{
"boxes": boxes[i],
"labels": labels[i],
"scores": scores[i],
}
)
detections = result
detections = model.transform.postprocess(detections, images.image_sizes, original_image_sizes) # type: ignore[operator]
model.rpn.training=False
model.roi_heads.training=False
losses = {}
losses.update(detector_losses)
losses.update(proposal_losses)
return losses, detections
Testing this code gives me:
import torchvision
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
# load a model pre-trained on COCO
model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
# replace the classifier with a new one, that has
# num_classes which is user-defined
num_classes = 2 # 1 class (person) + background
# get number of input features for the classifier
in_features = model.roi_heads.box_predictor.cls_score.in_features
# replace the pre-trained head with a new one
model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes)
losses, detections = eval_forward(model,torch.randn([1,3,300,300]),[{'boxes':torch.tensor([[100,100,200,200]]),'labels':torch.tensor([0])}])
{'loss_classifier': tensor(0.6594, grad_fn=<NllLossBackward0>),
'loss_box_reg': tensor(0., grad_fn=<DivBackward0>),
'loss_objectness': tensor(0.5108, grad_fn=<BinaryCrossEntropyWithLogitsBackward0>),
'loss_rpn_box_reg': tensor(0.0160, grad_fn=<DivBackward0>)}
Solution 2:[2]
Thank you so much for your patience. I've posted below a snippet of code that iterates over the dataloader. I think I've understood you but from what I've done below I get an empty dictionary when I print out the losses:
@torch.no_grad()
def evaluate_loss(model, data_loader, device):
val_loss = 0
for images, targets in data_loader:
images = list(image.to(device) for image in images)
targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
#USE PROVIDED CODE to get losses and detections
losses, detections = eval_forward(model, images, targets)
print(losses) # empty {}
val_loss += sum(loss for loss in losses.values())
validation_loss = val_loss/ len(data_loader)
return validation_loss
When I print losses and detections I get this:
{} [{'boxes': tensor([[ 0.0000, 430.0531, 364.2619, 512.0000],
[ 6.8726, 455.9226, 256.0113, 509.0516],
[ 5.7750, 227.0236, 138.1525, 503.0216],
[ 0.0000, 275.2110, 87.6766, 512.0000],
[ 55.3590, 484.3553, 311.3914, 512.0000],
[ 41.9545, 370.1071, 431.6385, 500.5055],
[ 0.0000, 391.8048, 187.7228, 512.0000],
[501.2419, 187.9812, 511.2767, 201.9233],
[507.1944, 195.7916, 511.5490, 216.8658],
[173.8539, 460.3328, 448.6479, 506.3229],
[ 0.0000, 200.4993, 224.5978, 455.6439],
[432.5095, 107.3605, 448.2870, 123.3097],
[ 0.0000, 484.3896, 181.2187, 512.0000],
[252.8410, 352.4666, 269.2491, 364.2188],
[141.6757, 485.4147, 439.0354, 512.0000],
[252.6323, 341.7145, 267.7503, 353.9413],
[134.9624, 314.2813, 474.5851, 492.6868],
[505.2639, 237.3413, 511.8117, 262.1838],
[ 0.0000, 297.2654, 370.9958, 492.1260],
[506.8980, 181.4306, 511.8102, 204.6986],
[171.3477, 413.2979, 487.6665, 512.0000],
[507.0528, 298.5904, 511.8441, 309.8073],
[336.4479, 267.7834, 499.2108, 496.2349],
[178.1360, 341.3546, 367.1203, 504.6978],
[244.6255, 218.8507, 257.6999, 231.4108],
[504.0644, 254.3425, 511.8181, 268.0185],
[ 0.0000, 365.2629, 39.0588, 512.0000],
[258.7524, 340.9509, 271.9611, 353.5555],
[507.1984, 443.6097, 511.7004, 455.8767],
[346.1955, 170.9065, 358.2302, 184.1580],
[ 50.2086, 324.4587, 251.0680, 512.0000],
[198.5728, 322.8210, 209.8158, 330.6772],
[498.2428, 141.8683, 511.1887, 224.0274],
[297.8328, 483.9214, 500.6504, 512.0000],
[383.7580, 302.3506, 406.5758, 328.4388],
[190.7700, 319.5901, 203.9809, 330.4897],
[248.1737, 341.2397, 272.0346, 364.2649],
[ 41.9480, 182.3307, 309.7350, 511.4400],
[507.6814, 465.5771, 511.6959, 478.4059],
[ 0.0000, 414.7599, 16.6887, 512.0000],
[ 0.0000, 495.9020, 9.1763, 512.0000],
[506.0956, 484.8349, 511.6204, 508.3524],
[ 0.0000, 484.2805, 14.1195, 512.0000],
[186.2599, 231.2097, 451.8763, 466.7952],
[465.1697, 499.5819, 508.8633, 512.0000],
[359.1404, 416.1848, 416.8053, 512.0000],
[444.5928, 200.7507, 457.7525, 216.0354],
[348.6382, 146.4818, 362.1615, 155.7809],
[288.0855, 181.4522, 306.9987, 202.8014],
[138.3017, 199.5426, 152.1866, 214.0261],
[ 54.3134, 322.8700, 66.6056, 339.6511],
[236.9178, 176.1253, 256.1872, 195.2987],
[183.0305, 224.6637, 198.1654, 238.4647],
[255.3874, 337.9686, 452.8956, 505.8088],
[195.6607, 342.5625, 207.6055, 351.6043],
[478.7965, 262.2610, 510.4778, 512.0000],
[507.0534, 62.8041, 511.7828, 83.3675],
[506.9258, 247.0326, 511.7821, 269.0636],
[ 0.0000, 482.6279, 39.7247, 512.0000],
[ 0.0000, 400.6234, 62.0636, 497.9158],
[504.7887, 295.1768, 511.6837, 314.4619],
[503.7539, 444.5576, 511.6874, 469.6237],
[420.8303, 139.0130, 435.5850, 155.6219],
[ 0.0000, 169.4536, 35.6173, 512.0000],
[505.5238, 216.9875, 511.8623, 244.7741],
[493.3357, 183.2157, 510.4757, 225.7995],
[283.5856, 184.4567, 294.6422, 199.1284],
[506.1086, 172.9610, 511.7372, 195.6782],
[421.7606, 478.9979, 506.9432, 512.0000],
[ 0.0000, 128.1171, 182.0242, 372.1508],
[266.6456, 212.4419, 285.0941, 230.3711],
[242.4399, 337.2843, 292.0536, 369.6913],
[490.5333, 151.4534, 511.3717, 199.9196],
[195.0700, 317.0647, 208.6026, 328.3253],
[506.5237, 166.3083, 511.7383, 186.4610],
[285.0119, 210.5486, 302.8143, 227.0892],
[507.7259, 159.7037, 511.7627, 177.6721],
[507.2086, 409.5898, 511.7660, 443.1966],
[486.4733, 1.5067, 511.0473, 32.8377],
[499.7045, 410.5609, 511.2081, 495.3992],
[381.5405, 282.1667, 394.4013, 292.7220],
[398.5074, 97.8511, 408.5006, 109.4040],
[286.4212, 66.7245, 305.3555, 84.7535],
[ 53.2904, 198.9514, 72.6522, 218.6958],
[ 0.0000, 119.1250, 352.9160, 404.2254],
[305.2835, 262.8656, 322.0334, 282.8750],
[ 67.7342, 107.0263, 79.3835, 116.1997],
[504.5052, 328.6933, 511.7248, 354.2790],
[505.5066, 454.7970, 511.6003, 479.1691],
[297.2463, 179.5240, 459.4996, 500.3919],
[505.9551, 116.8015, 511.8934, 139.2066],
[ 51.7288, 143.0008, 70.2031, 162.0272],
[281.4141, 178.7466, 292.6686, 195.8384],
[329.5997, 233.1259, 344.1964, 247.8056],
[308.4427, 105.4068, 324.9741, 120.8449],
[173.9055, 208.1558, 187.9732, 223.4990],
[506.5709, 396.8288, 511.6976, 427.8991],
[281.4510, 187.4271, 317.5686, 229.1852],
[395.2721, 351.2404, 407.8893, 365.8526],
[501.4947, 463.5199, 511.3037, 476.1774]]), 'labels': tensor([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1]), 'scores': tensor([0.7932, 0.7808, 0.7726, 0.7688, 0.7644, 0.7624, 0.7563, 0.7557, 0.7481,
0.7428, 0.7417, 0.7415, 0.7414, 0.7403, 0.7378, 0.7354, 0.7293, 0.7268,
0.7256, 0.7235, 0.7196, 0.7195, 0.7192, 0.7175, 0.7163, 0.7160, 0.7130,
0.7126, 0.7122, 0.7120, 0.7120, 0.7095, 0.7095, 0.7094, 0.7083, 0.7065,
0.7048, 0.7042, 0.7041, 0.7038, 0.7006, 0.7005, 0.6998, 0.6997, 0.6974,
0.6974, 0.6969, 0.6963, 0.6958, 0.6950, 0.6949, 0.6946, 0.6946, 0.6936,
0.6925, 0.6915, 0.6897, 0.6897, 0.6884, 0.6880, 0.6862, 0.6861, 0.6858,
0.6855, 0.6853, 0.6848, 0.6844, 0.6836, 0.6827, 0.6823, 0.6814, 0.6808,
0.6797, 0.6784, 0.6770, 0.6769, 0.6766, 0.6764, 0.6764, 0.6755, 0.6754,
0.6735, 0.6733, 0.6720, 0.6715, 0.6713, 0.6712, 0.6697, 0.6693, 0.6687,
0.6673, 0.6671, 0.6670, 0.6669, 0.6663, 0.6658, 0.6658, 0.6658, 0.6657,
0.6654])}]
Where losses are not calculated as shown by the first dictionary
Solution 3:[3]
By following the code provided by @jhso I determine validation loss by looking at the losses dictionary, sum all of these losses, and at the end average them by the length of the dataloader:
def evaluate_loss(model, data_loader, device):
val_loss = 0
with torch.no_grad():
for images, targets in data_loader:
images = list(image.to(device) for image in images)
targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
losses_dict, detections = eval_forward(model, images, targets)
losses = sum(loss for loss in loss_dict.values())
val_loss += losses
validation_loss = val_loss/ len(data_loader)
return validation_loss
I then place it into the following loop for training and evaluation:
import utils
from engine import train_one_epoch, evaluate
for epoch in range(num_epochs):
# train for one epoch, printing every 10 iterations
train_one_epoch(model, optimizer, train_data_loader, device, epoch, print_freq=10)
# update the learning rate
lr_scheduler.step()
# new function that determines validation loss
validation_loss = evaluate_loss(model, valid_data_loader, device=device)
print(validation_loss)
# evaluate on the test dataset
evaluate(model, valid_data_loader, device=device)
I think this is correct.
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
Solution | Source |
---|---|
Solution 1 | |
Solution 2 | |
Solution 3 |