'How to compare just the date or just date time ignoring seconds in a Python Pandas dataframe column of mixed data types?
In a pandas dataframe, I have a column of mixed data types, such as text, integers and datetimes. I need to find columns where datetimes match: (1) exact values in some cases, (2) only the date (ignoring time), or (3) only the date and time, but ignoring seconds.
In the following code example with a mixed data type dataframe column, there are three dates of varying imprecision. Mapping the conditions into a separate dataframe works for a precise value.
import pandas as pd
import numpy as np
# example data frame
inp = [{'Id': 0, 'mixCol': np.nan},
{'Id': 1, 'mixCol': "text"},
{'Id': 2, 'mixCol': 43831},
{'Id': 3, 'mixCol': pd.to_datetime("2020-01-01 00:00:00")},
{'Id': 4, 'mixCol': pd.to_datetime("2020-01-01 01:01:00")},
{'Id': 5, 'mixCol': pd.to_datetime("2020-01-01 01:01:01")}
]
df = pd.DataFrame(inp)
print(df.dtypes)
myMap = pd.DataFrame()
myMap["Exact"] = df["mixCol"] == pd.to_datetime("2020-01-01 01:01:01")
0 False
1 False
2 False
3 False
4 False
5 True
6 False
The output I need should be:
Id Exact DateOnly NoSeconds
0 False False False
1 False False False
2 False False False
3 False True False
0 False True True
5 True True True
6 False False False
BUT, mapping just the date, without time, maps as if the date had a time of 00:00:00.
myMap["DateOnly"] = df["mixCol"] == pd.to_datetime("2020-01-01")
Id Exact DateOnly
0 False False
1 False False
2 False False
3 False True
0 False False
5 True False
6 False False
Trying to convert values in the mixed column throws an AttributeError: 'Series' object has not attribute 'date'; and trying to use ">" and "<" to define the relevant range throws a TypeError: '>=' not supported between instances of 'str' and 'Timestamp'
myMap["DateOnly"] = df["mixCol"].date == pd.to_datetime("2020-01-01")
myMap["NoSeconds"] = (df["mixCol"] >= pd.to_datetime("2020-01-01 01:01:00")) & (df["mixCol"] < pd.to_datetime("2020-01-01 01:02:00"))
If I try to follow the solution for mix columns in pandas proposed here, both the np.nan and text value map true as dates.
df["IsDate"] = df.apply(pd.to_datetime, errors='coerce',axis=1).nunique(1).eq(1).map({True:True ,False:False})
I'm not sure how to proceed in this situation?
Solution 1:[1]
Use Series.dt.normalize
for compare datetimes with remove times (set them to 00:00:00
) or with Series.dt.floor
by days or minutes for remove seconds:
#convert column to all datetimes with NaT
d = pd.to_datetime(df["mixCol"], errors='coerce')
myMap["DateOnly"] = d.dt.normalize() == pd.to_datetime("2020-01-01")
myMap["DateOnly"] = d.dt.floor('D') == pd.to_datetime("2020-01-01")
#alternative with dates
myMap["DateOnly"] = d.dt.date == pd.to_datetime("2020-01-01").date()
myMap['NoSeconds'] = d.dt.floor('Min') == pd.to_datetime("2020-01-01 01:01:00")
print (myMap)
Exact DateOnly NoSeconds
0 False False False
1 False False False
2 False False False
3 False True False
4 False True True
5 True True True
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
Solution | Source |
---|---|
Solution 1 |