'How to replace values in column when other column is not nan or replace with other?
I am new to Pandas, I am looking for solution where I can replace one column values with other columns. For eg:
Replace value of col A with the values in Col E if the values are Nan in colE, Replace with the value of ColD if not nan, else replace with the values of ColC. Can anyone please help?
Solution 1:[1]
You can use .fillna
for that, which basically means "use original value if it exists, otherwise use the fill value".
So, your example should look something like this:
df_merged = df.assign(A=df['A'].fillna(df['E']).fillna(df['D']).fillna(df['C'])
Solution 2:[2]
What you describe looks a lot like bfill
:
df = pd.DataFrame({'A': [1, None, None, None, None],
'B': [2, 3, None, None, None],
'C': [4, 5, 6, 7, None],
'D': [8, 9, 10, None, None],
'E': [11, 12, None, None, None]
})
# A B C D E
# 0 2.0 2.0 4.0 8.0 11.0
# 1 3.0 3.0 5.0 9.0 12.0
# 2 6.0 NaN 6.0 10.0 NaN
# 3 7.0 NaN 7.0 NaN NaN
# 4 NaN NaN NaN NaN NaN
order = ['A', 'E', 'D', 'C']
df['A'] = df[order].bfill(axis=1)['A']
# A B C D E
# 0 1.0 2.0 4.0 8.0 11.0
# 1 12.0 3.0 5.0 9.0 12.0
# 2 10.0 NaN 6.0 10.0 NaN
# 3 7.0 NaN 7.0 NaN NaN
# 4 NaN NaN NaN NaN NaN
or if you really want to replace all values of A (even the non-NaN):
order = ['E', 'D', 'C']
df['A'] = df[order].bfill(axis=1)['E']
# A B C D E
# 0 11.0 2.0 4.0 8.0 11.0
# 1 12.0 3.0 5.0 9.0 12.0
# 2 10.0 NaN 6.0 10.0 NaN
# 3 7.0 NaN 7.0 NaN NaN
# 4 NaN NaN NaN NaN NaN
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
Solution | Source |
---|---|
Solution 1 | Elias Mi |
Solution 2 |