'image classification problem found . i need help about this

firstly i have trained a dataset by image data generator and sequential model. but i got a an issue . my model is not predicting well. it is predicting if i train model with 1 or 10 epoch but it is not working for 100 epochs. i have searched it everywhere. but can't solve the problem. can you tell me about this ??

def create_model(no_of_classes): model = Sequential()

model.add(Conv2D(64,(3,3),padding = 'same',input_shape = (48,48,1)))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size = (2,2)))
model.add(Dropout(0.25))

model.add(Conv2D(128,(5,5),padding = 'same'))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size = (2,2)))
model.add(Dropout (0.25))

model.add(Conv2D(512,(3,3),padding = 'same'))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size = (2,2)))
model.add(Dropout (0.25))

model.add(Conv2D(512,(3,3), padding='same'))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))

model.add(Flatten())

model.add(Dense(256))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Dropout(0.25))

model.add(Dense(512))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Dropout(0.25))

model.add(Dense(no_of_classes, activation='softmax'))



model.compile(optimizer='adam',
              loss='binary_crossentropy',
              metrics=['accuracy'])
return model

model=create_model(no_of_classes)

is there any problem with this model ??



Sources

This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.

Source: Stack Overflow

Solution Source