'Is the sscanf function in the Linux kernel susceptible to buffer overflow attacks?
From what I understand, a typical buffer overflow attack occurs when an attack overflows a buffer of memory on the stack, thus allowing the attacker to inject malicious code and rewrite the return address on the stack to point to that code.
This is a common concern when using functions (such as sscanf
) that blindly copy data from one area to another, checking one for a termination byte:
char str[8]; /* holds up to 8 bytes of data */
char *buf = "lots and lots of foobars"; /* way more than 8 bytes of data */
sscanf(buf, "%s", str); /* buffer overflow occurs here! */
I noticed some sysfs_ops
store
functions in the Linux kernel are implemented with the Linux kernel's version of the sscanf
function:
static char str[8]; /* global string */
static ssize_t my_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
sscanf(buf, "%s", str); /* buf holds more than 8 bytes! */
return size;
}
Suppose this store
callback function is set to a writable sysfs
attribute. Would a malicious user be able to intentionally overflow the buffer via a write
call?
Normally, I would expect guards against buffer overflow attacks -- such as limiting the number of bytes read -- but I see none in a good number of functions (for example in drivers/scsi/scsi_sysfs.c).
Does the implementation of the Linux kernel version of sscanf
protect against buffer overflow attacks; or is there another reason -- perhaps buffer overflow attacks are impossible given how the Linux kernel works under the hood?
Solution 1:[1]
The Linux sscanf()
is vulnerable to buffer overflows; inspection of the source shows this. You can use width specifiers to limit the amount a %s
is allowed to write. At some point your str
must have had copy_from_user()
run on it as well. It is possible the user space to pass some garbage pointer to the kernel.
In the version of Linux you cited, the scsi_sysfs.c does have a buffer overflow. The latest version does not. The committed fix should fix the issue you see.
Solution 2:[2]
Short answer:
sscanf
, when well called, will not cause buffer overflow, especially in sysfs xxx_store()
function. (There are a lot sscanf
in sysfs XXX_store()
examples), because Linux kernel add a '\0'
(zero-terminated) byte after the string (buf[len] = 0;
) for your XXX_store()
function.
Long answer:
Normally, sysfs are defined to have a strict formatted data. Since you expect 8 bytes at most, it's reasonable to limit the size you get like this:
static char str[8]; /* global string */
static ssize_t my_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
if (size > 8) {
printk("Error: Input size > 8: too large\n");
return -EINVAL;
}
sscanf(buf, "%s", str); /* buf holds more than 8 bytes! */
return size;
}
(Note: use 9 rather than 8, if you expect a 8-bytes string plus '\n')
(Note that you do reject some inputs such as those with many leading white spaces. However, who would send a string with many leading white spaces? Those who want to break your code, right? If they don't follow your spec, just reject them.)
Note that Linux kernel purposely inserts a '\0'
at offset len
(i.e. buf[len] = 0;
) when the user write len
bytes to sysfs purposely for safe sscanf
, as said in a comment in kernel 2.6: fs/sysfs/file.c
:
static int
fill_write_buffer(struct sysfs_buffer * buffer, const char __user * buf, size_t count)
{
int error;
if (!buffer->page)
buffer->page = (char *)get_zeroed_page(GFP_KERNEL);
if (!buffer->page)
return -ENOMEM;
if (count >= PAGE_SIZE)
count = PAGE_SIZE - 1;
error = copy_from_user(buffer->page,buf,count);
buffer->needs_read_fill = 1;
/* if buf is assumed to contain a string, terminate it by \0,
so e.g. sscanf() can scan the string easily */
buffer->page[count] = 0;
return error ? -EFAULT : count;
}
...
static ssize_t
sysfs_write_file(struct file *file, const char __user *buf, size_t count, loff_t *ppos)
{
struct sysfs_buffer * buffer = file->private_data;
ssize_t len;
mutex_lock(&buffer->mutex);
len = fill_write_buffer(buffer, buf, count);
if (len > 0)
len = flush_write_buffer(file->f_path.dentry, buffer, len);
if (len > 0)
*ppos += len;
mutex_unlock(&buffer->mutex);
return len;
}
Higher kernel version keeps the same logic (though already completely rewritten).
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
Solution | Source |
---|---|
Solution 1 | HoldOffHunger |
Solution 2 | Robin Hsu |