'Linearregression of two dataframes
I have two dataframes:
df = pd.DataFrame([{'A': -4, 'B': -3, 'C': -2, 'D': -1, 'E': 2, 'F': 4, 'G': 8, 'H': 6, 'I': -2}])
df2 looks like this (just a cutout; in total there are ~100 rows).
df2 = pd.DataFrame({'Date': [220412004, 220412004, 220412004, 220412006], 'A': [-0.15584, -0.11446, -0.1349, -0.0458], 'B': [-0.11826, -0.0833, -0.1025, -0.0216], 'C': [-0.0611, -0.0413, -0.0645, -0.0049], 'D': [-0.04461, -0.022693, -0.0410, 0.0051], 'E': [0.0927, 0.0705, 0.0923, 0.0512], 'F': [0.1453, 11117, 0.1325, 0.06205], 'G': [0.30077, 0.2274, 0.2688, 0.1077], 'H': [0.2449, 0.1860, 0.2274, 0.09328], 'I': [-0.0706, -0.0612, -0.0704, -0.02953]})
Date A B C D E F G H I
3 220412004 -0.15584 -0.11826 -0.0611 -0.04461 0.0927 0.1453 0.30077 0.2449 -0.0706
4 220412004 -0.11446 -0.0833 -0.0413 -0.022693 0.0705 0.11117 0.2274 0.1860 -0.0612
5 220412004 -0.1349 -0.1025 -0.0645 -0.0410 0.0923 0.1325 0.2688 0.2274 -0.0704
7 220412006 -0.0458 -0.0216 -0.0049 0.0051 0.0512 0.06205 0.1077 0.09328 -0.02953
Now I want to iterate through df2 and make a linear regression of each row (of df2) as y-axis with df as base (x-Axis).
My approach was:
import numpy as np
import pandas as pd
from sklearn.metrics import r2_score
for index, row in df2.iterrows():
reg = np.polyfit(df, row, 1)
predict = np.poly1d(reg)
trend = np.polyval(reg, df)
std = row.std()
r2 = np.round(r2_score(row.values, predict(df)), 5)
However, I get this error:
TypeError: can only concatenate str (not "float") to str
Any ideas? Thx in advance
Solution 1:[1]
The documentation of the Numpy indicates that the x
and y
in polyfit
function have shape (M,)
and shape (M,) or (M, K)
. You do not comply with this agreement for the x
and 'y'. It should be used like np.polyfit(df.values[0], row.values, 1)
.
Note that the date must be passed to the index.
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
Solution | Source |
---|---|
Solution 1 | Mohammadreza Riahi |