'Match text from one column with another column (vlookup + like)
I'm trying to perform a match of 2 columns but without success. I have one DF1
with 2 columns, Id
and JSON
. In the second DF2
, I have one column with a pattern to be matched in each row for DF1$json
(something like vlookup + like function).
As an output, I'd like to get DF1$Id
but only where any of DF2
is matched with DF1$json
.
I've tried some combinations with str_detect
but it doesn't work on non-vector values. Maybe some tricks with grep
or stringr
functions?
For example:
str_detect(DF1$json, fixed(DF2[1,1], ignore_case = TRUE))
Solution 1:[1]
df1 <- data.frame(
Id = c("AA", "BB", "CC", "DD"),
json = c("{xxx:yyy:zzz};{mmm:zzz:vvv}", "{ccc:yyy:zzz};{ddd:zzz:vvv}", "{ttt:yyy:zzz};{mmm:zzz:vvv}", "{uuu:yyy:zzz};{mmm:zzz:vvv}")
)
matches <- c("mmm:zzz:vvv", "mmm:yyy:zzz")
library(stringr) # needed for str_extract_all()
Solution using data.table
library(data.table)
setDT(df1)
df1[, match := any(str_extract_all(json, "(?<=\\{).+?(?=\\})")[[1]] %in% matches), by = Id]
df1[match == T, .(Id)]
Solution using dplyr
library(dplyr)
df1 %>%
group_by(Id) %>%
mutate(match = any(str_extract_all(json, "(?<=\\{).+?(?=\\})")[[1]] %in% matches)) %>%
filter(match == T) %>%
select(Id)
Or just directly filter()
df1 %>%
group_by(Id) %>%
filter(any(str_extract_all(json, "(?<=\\{).+?(?=\\})")[[1]] %in% matches)) %>%
select(Id)
Output on both methods
Id
1: AA
2: CC
3: DD
Solution 2:[2]
Does this give you the expected result :
my_df <- data.frame("id" = c("AA", "BB", "CC", "DD"),
"json" = c("{x:y:z};{m:z:v}", "{c:y:z};{d:z:v}", "{t:y:z};{m:z:v}", "{u:y:z};{m:z:v}"),
"pattern" = c("m:z:v", "t:y:z", "m:z:v", "t"),
stringsAsFactors = FALSE)
my_f <- function(x) {
my_var <- paste(grep(pattern = my_df[x, "pattern"], x = my_df$json), collapse = " ")
return (my_var)
}
my_df$Value <- lapply(1:nrow(my_df), my_f)
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
Solution | Source |
---|---|
Solution 1 | |
Solution 2 | DataM |