'object detection with YOLO in 2 stream cameras using multithread and opencv
I want to do object detection with YOLO in 2 stream cameras. I use multithread and the result is like in the video. So when 2 camera streams are used, object detection error occurs (many random rectangles), but if it only runs on 1 stream, object detection works. why did that happen? Is it because of using the same GPU? Thank you for the help
video links: https://drive.google.com/file/d/1tayLjULfTbzfwbtgnfLkGVJ2YGSDWdd9/view?usp=sharing
Code:
from pengaturan import social_distancing_config as config
from pengaturan.detection import detect_people
from scipy.spatial import distance as dist
import numpy as np
import argparse
import imutils
import cv2
import os
import time #buat fps calculator
import threading
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--input", type=str, default="",
help="path to (optional) input video file")
ap.add_argument("-o", "--output", type=str, default="",
help="path to (optional) output video file")
ap.add_argument("-d", "--display", type=int, default=1,
help="whether or not output frame should be displayed")
args = vars(ap.parse_args())
# load the COCO class labels our YOLO model was trained on
labelsPath = os.path.sep.join([config.MODEL_PATH, "coco.names"])
LABELS = open(labelsPath).read().strip().split("\n")
# derive the paths to the YOLO weights and model configuration
weightsPath = os.path.sep.join([config.MODEL_PATH, "yolov3.weights"])
configPath = os.path.sep.join([config.MODEL_PATH, "yolov3.cfg"])
# load our YOLO object detector trained on COCO dataset (80 classes)
print("[INFO] loading YOLO from disk...")
net = cv2.dnn.readNetFromDarknet(configPath, weightsPath)
# check if we are going to use GPU
if config.USE_GPU:
# set CUDA as the preferable backend and target
print("[INFO] setting preferable backend and target to CUDA...")
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA)
net.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA)
# determine only the *output* layer names that we need from YOLO
ln = net.getLayerNames()
ln = [ln[i - 1] for i in net.getUnconnectedOutLayers()]
threadLock=threading.Lock()
# locks are usually used implement synchronous access to shared resources 。
# create a lock object for each shared resource ,
# called when you need to access the resource acquire method to get the lock object
# (if other threads have already acquired the lock, the current thread has to wait for it to be released )
class myThread (threading.Thread):
maxRetries=20
def __init__(self, threadID, name,video_url):
threading.Thread.__init__(self)
self.threadID = threadID
self.name = name
self.video_url=video_url
def attemptRead(self,cvVideo):
threadLock.acquire()
(isRead,cvImage)=cvVideo.read()
threadLock.release()
if isRead==False:
count=1
while isRead==False and count<myThread.maxRetries:
threadLock.acquire()
(isRead,cvImage)=cvVideo.read()
threadLock.release()
print (self.name+' try no: ',count)
count+=1
return (isRead,cvImage)
def run(self):
print ("Starting " + self.name)
windowName = self.name
cv2.namedWindow(windowName)
vs = cv2.VideoCapture(self.video_url)
fps = vs.get(cv2.CAP_PROP_FPS)
print("Frames per second camera: {0}".format(fps))
writer = None
#bagian ngitung FPS
fps_start_time = 0
fps = 0
while True:
#bagian ngitung FPS
fps_start_time = time.time()
# read the next frame from the file
(grabbed,frame)=self.attemptRead(vs)
# if the frame was not grabbed, then we have reached the end
# of the stream
if grabbed==False:
break
# resize the frame and then detect people (and only people) in it
frame = imutils.resize(frame, width=700)
results = detect_people(frame, net, ln,
personIdx=LABELS.index("person"))
# initialize the set of indexes that violate the minimum social
# distance
violate = set()
# ensure there are *at least* two people detections (required in
# order to compute our pairwise distance maps)
if len(results) >= 2:
# extract all centroids from the results and compute the
# Euclidean distances between all pairs of the centroids
centroids = np.array([r[2] for r in results])
D = dist.cdist(centroids, centroids, metric="euclidean")
# loop over the upper triangular of the distance matrix
for i in range(0, D.shape[0]):
for j in range(i + 1, D.shape[1]):
# check to see if the distance between any two
# centroid pairs is less than the configured number
# of pixels
if D[i, j] < config.MIN_DISTANCE:
# update our violation set with the indexes of
# the centroid pairs
violate.add(i)
violate.add(j)
# loop over the results
for (i, (prob, bbox, centroid)) in enumerate(results):
# extract the bounding box and centroid coordinates, then
# initialize the color of the annotation
(startX, startY, endX, endY) = bbox
(cX, cY) = centroid
color = (0, 255, 0)
# if the index pair exists within the violation set, then
# update the color
if i in violate:
color = (0, 0, 255)
# draw (1) a bounding box around the person and (2) the
# centroid coordinates of the person,
cv2.rectangle(frame, (startX, startY), (endX, endY), color, 2)
cv2.circle(frame, (cX, cY), 5, color, 1)
# draw the total number of social distancing violations on the
# output frame
text = "Pelanggaran Physical Distancing : {}".format(len(violate))
cv2.putText(frame, text, (10, frame.shape[0] - 25),
cv2.FONT_HERSHEY_SIMPLEX, 0.85, (0, 0, 255), 3)
#bagian ngitung FPS
fps_end_time = time.time()
time_diff = fps_end_time - fps_start_time
fps = 1/(time_diff)
fps_text = "FPS: {:.2f}".format(fps)
cv2.putText(frame, fps_text, (5,30), cv2.FONT_HERSHEY_COMPLEX, 1, (0,255,255), 1)
if args["display"] > 0:
# show the output frame
cv2.imshow(windowName, frame)
key = cv2.waitKey(1) & 0xFF
# if the `q` key was pressed, break from the loop
if key == ord("q") or key==27:
break
cv2.destroyWindow(windowName)
print (self.name + "Exiting")
def main():
thread1 = myThread(1, "Thread1",0)
thread2 = myThread(2, "Thread2",'http://192.168.1.7:8080/video')
# thread3 = myThread(3, "Thread3",'http://192.168.43.1:8080/video')
thread1.start()
thread2.start()
# thread3.start()
print ("Exiting Main Thread")
if __name__ == '__main__':
main()
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
Solution | Source |
---|