'OpenCV: undistort (for images) and undistortPoints are inconsistent
For testing I generate a grid image as matrix and again the grid points as point array:
This represents a "distorted" camera image along with some feature points. When I now undistort both the image and the grid points, I get the following result:
(Note that the fact that the "distorted" image is straight and the "undistorted" image is morphed is not the point, I'm just testing the undistortion functions with a straight test image.)
The grid image and the red grid points are totally misaligned now. I googled and found that some people forget to specify the "new camera matrix" parameter in undistortPoints but I didn't. The documentation also mentions a normalization but I still have the problem when I use the identity matrix as camera matrix. Also, in the central region it fits perfectly.
Why is this not identical, do I use something in a wrong way?
I use cv2 (4.1.0) in Python. Here is the code for testing:
import numpy as np
import matplotlib.pyplot as plt
import cv2
w = 401
h = 301
# helpers
#--------
def plotImageAndPoints(im, pu, pv):
plt.imshow(im, cmap="gray")
plt.scatter(pu, pv, c="red", s=16)
plt.xlim(0, w)
plt.ylim(0, h)
plt.show()
def cv2_undistortPoints(uSrc, vSrc, cameraMatrix, distCoeffs):
uvSrc = np.array([np.matrix([uSrc, vSrc]).transpose()], dtype="float32")
uvDst = cv2.undistortPoints(uvSrc, cameraMatrix, distCoeffs, None, cameraMatrix)
uDst = [uv[0] for uv in uvDst[0]]
vDst = [uv[1] for uv in uvDst[0]]
return uDst, vDst
# test data
#----------
# generate grid image
img = np.ones((h, w), dtype = "float32")
img[0::20, :] = 0
img[:, 0::20] = 0
# generate grid points
uPoints, vPoints = np.meshgrid(range(0, w, 20), range(0, h, 20), indexing='xy')
uPoints = uPoints.flatten()
vPoints = vPoints.flatten()
# see if points align with the image
plotImageAndPoints(img, uPoints, vPoints) # perfect!
# undistort both image and points individually
#---------------------------------------------
# camera matrix parameters
fx = 1
fy = 1
cx = w/2
cy = h/2
# distortion parameters
k1 = 0.00003
k2 = 0
p1 = 0
p2 = 0
# convert for opencv
mtx = np.matrix([
[fx, 0, cx],
[ 0, fy, cy],
[ 0, 0, 1]
], dtype = "float32")
dist = np.array([k1, k2, p1, p2], dtype = "float32")
# undistort image
imgUndist = cv2.undistort(img, mtx, dist)
# undistort points
uPointsUndist, vPointsUndist = cv2_undistortPoints(uPoints, vPoints, mtx, dist)
# test if they still match
plotImageAndPoints(imgUndist, uPointsUndist, vPointsUndist) # awful!
Any help appreciated!
Solution 1:[1]
A bit late to the party, but to help others running into this issue: The problem is that UndistortPoints is an iterative calculation which in some cases exits before a stable solution has been reached. This can be fixed by modifying the termination criteria for the calculation, which can be done by using UndistortPointsIter. You should replace:
uvDst = cv2.undistortPoints(uvSrc, cameraMatrix, distCoeffs, None, cameraMatrix)
with:
uvDst = cv2.undistortPointsIter(uvSrc, cameraMatrix, distCoeffs, None, cameraMatrix,(cv2.TERM_CRITERIA_COUNT | cv2.TERM_CRITERIA_EPS, 40, 0.03))
Now, it tries 40 iterations to find a solution, rather than the default 5 iterations.
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
Solution | Source |
---|---|
Solution 1 | BrokenBenchmark |