'pandas: merge (join) two data frames on multiple columns
I am trying to join two pandas data frames using two columns:
new_df = pd.merge(A_df, B_df, how='left', left_on='[A_c1,c2]', right_on = '[B_c1,c2]')
but got the following error:
pandas/index.pyx in pandas.index.IndexEngine.get_loc (pandas/index.c:4164)()
pandas/index.pyx in pandas.index.IndexEngine.get_loc (pandas/index.c:4028)()
pandas/src/hashtable_class_helper.pxi in pandas.hashtable.PyObjectHashTable.get_item (pandas/hashtable.c:13166)()
pandas/src/hashtable_class_helper.pxi in pandas.hashtable.PyObjectHashTable.get_item (pandas/hashtable.c:13120)()
KeyError: '[B_1, c2]'
Any idea what should be the right way to do this? Thanks!
Solution 1:[1]
Try this
new_df = pd.merge(A_df, B_df, how='left', left_on=['A_c1','c2'], right_on = ['B_c1','c2'])
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.merge.html
left_on : label or list, or array-like Field names to join on in left DataFrame. Can be a vector or list of vectors of the length of the DataFrame to use a particular vector as the join key instead of columns
right_on : label or list, or array-like Field names to join on in right DataFrame or vector/list of vectors per left_on docs
Solution 2:[2]
the problem here is that by using the apostrophes you are setting the value being passed to be a string, when in fact, as @Shijo stated from the documentation, the function is expecting a label or list, but not a string! If the list contains each of the name of the columns beings passed for both the left and right dataframe, then each column-name must individually be within apostrophes. With what has been stated, we can understand why this is inccorect:
new_df = pd.merge(A_df, B_df, how='left', left_on='[A_c1,c2]', right_on = '[B_c1,c2]')
And this is the correct way of using the function:
new_df = pd.merge(A_df, B_df, how='left', left_on=['A_c1','c2'], right_on = ['B_c1','c2'])
Solution 3:[3]
Another way of doing this:
new_df = A_df.merge(B_df, left_on=['A_c1','c2'], right_on = ['B_c1','c2'], how='left')
Solution 4:[4]
you can use below which is short and simple to understand:
merged_data= df1.merge(df2, on=["column1","column2"])
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
Solution | Source |
---|---|
Solution 1 | Community |
Solution 2 | Celius Stingher |
Solution 3 | |
Solution 4 | Ali karimi |